当前位置: X-MOL 学术Plant Reprod. › 论文详情
Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids.
Plant Reproduction ( IF 3.957 ) Pub Date : 2019-03-21 , DOI: 10.1007/s00497-019-00369-6
Dorota Duszynska,Bjarni Vilhjalmsson,Rosa Castillo Bravo,Sandesh Swamidatta,Thomas E Juenger,Mark T A Donoghue,Aurélie Comte,Magnus Nordborg,Timothy F Sharbel,Galina Brychkova,Peter C McKeown,Charles Spillane

Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production "machines" where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.
更新日期:2020-04-22

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug