当前位置: X-MOL 学术J. Appl. Biomater. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on corrosion behavior and biocompatibility of a porous Mg–3%Zn/5%β-Ca3(PO4)2 composite scaffold for bone tissue engineering
Journal of Applied Biomaterials & Functional Materials ( IF 3.1 ) Pub Date : 2019-04-01 , DOI: 10.1177/2280800019857064
Mingying Tang 1 , Yang Yan 2 , Jianan OuYang 3 , Kun Yu 2 , Congcong Liu 1 , Xiaohua Zhou 1 , Zhenting Wang 1 , Youwen Deng 1 , Cijun Shuai 4
Affiliation  

Background: Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca3(PO4)2 (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone. Methods: In this research, the magnesium alloy was reinforced by adding 3%Zn (wt.%) and 5%β-TCP (wt.%) particles in order to improve the corrosion resistance and biocompatibility. Furthermore, the biomaterial was prepared through powder metallurgy technology using NH4HCO3 as space-holding particles to construct porous Mg–3%Zn/5%β-TCP scaffolds. Results: The results revealed that the magnesium-zinc phase and calcium phosphate phase were uniformly distributed in the α-magnesium matrix. Mechanical and corrosion tests indicated that the scaffolds had mechanical strengths similar to that of human bone, and their corrosion resistance decreased with an increase in the porosity. The scaffolds had cytotoxicity grades of 0–1 against MG63 cells, SaoS2 cells, and HK-2 cells, which suggested that they were appropriate for cellular applications. In addition, the scaffolds demonstrated excellent biocompatibility when tested in rabbits. Conclusions: These results indicate that porous Mg–3%Zn/5%β-TCP scaffolds are promising biodegradable implants for bone tissue engineering.

中文翻译:

用于骨组织工程的多孔Mg-3%Zn/5%β-Ca3(PO4)2复合支架的腐蚀行为和生物相容性研究

背景:尽管镁合金具有良好的机械性能和可生物降解性,但快速腐蚀速率是在骨组织工程中使用镁合金的主要障碍。锌是一种很有前途的合金元素,是镁的有效晶粒细化剂。β-Ca3(PO4)2 (β-TCP)因其良好的生物相容性而被广泛用于骨再生,并且还具有与人骨相似的化学和晶体结构。方法:本研究通过添加3%Zn(wt.%)和5%β-TCP(wt.%)颗粒对镁合金进行增强,以提高其耐腐蚀性和生物相容性。此外,通过粉末冶金技术制备生物材料,使用 NH4HCO3 作为空间保持颗粒,构建多孔 Mg-3%Zn/5%β-TCP 支架。结果:结果表明,镁锌相和磷酸钙相均匀分布在α-镁基体中。力学和腐蚀试验表明,支架具有与人骨相似的机械强度,并且其耐腐蚀性随着孔隙率的增加而降低。该支架对 MG63 细胞、SaoS2 细胞和 HK-2 细胞的细胞毒性等级为 0-1,这表明它们适用于细胞应用。此外,在兔子身上测试时,支架表现出优异的生物相容性。结论:这些结果表明多孔 Mg–3%Zn/5%β-TCP 支架是用于骨组织工程的有前途的可生物降解植入物。力学和腐蚀试验表明,支架具有与人骨相似的机械强度,并且其耐腐蚀性随着孔隙率的增加而降低。该支架对 MG63 细胞、SaoS2 细胞和 HK-2 细胞的细胞毒性等级为 0-1,这表明它们适用于细胞应用。此外,在兔子身上测试时,支架表现出优异的生物相容性。结论:这些结果表明多孔 Mg–3%Zn/5%β-TCP 支架是用于骨组织工程的有前途的可生物降解植入物。力学和腐蚀试验表明,支架具有与人骨相似的机械强度,其耐腐蚀性随着孔隙率的增加而降低。该支架对 MG63 细胞、SaoS2 细胞和 HK-2 细胞的细胞毒性等级为 0-1,这表明它们适用于细胞应用。此外,在兔子身上测试时,支架表现出优异的生物相容性。结论:这些结果表明多孔 Mg–3%Zn/5%β-TCP 支架是用于骨组织工程的有前途的可生物降解植入物。此外,在兔子身上测试时,支架表现出优异的生物相容性。结论:这些结果表明多孔 Mg–3%Zn/5%β-TCP 支架是用于骨组织工程的有前途的可生物降解植入物。此外,在兔子身上测试时,支架表现出优异的生物相容性。结论:这些结果表明多孔 Mg–3%Zn/5%β-TCP 支架是用于骨组织工程的有前途的可生物降解植入物。
更新日期:2019-04-01
down
wechat
bug