当前位置: X-MOL 学术IEEE J. Sel. Top. Quantum Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges
IEEE Journal of Selected Topics in Quantum Electronics ( IF 4.3 ) Pub Date : 2016-05-01 , DOI: 10.1109/jstqe.2015.2493962
Fredrick A South 1 , Yuan-Zhi Liu 1 , P Scott Carney 1 , Stephen A Boppart 2
Affiliation  

Three-dimensional high-resolution optical imaging systems are generally restricted by the tradeoff between resolution and depth-of-field as well as imperfections in the imaging system or sample. Computed optical interferometric imaging is able to overcome these longstanding limitations using methods such as interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO), which manipulate the complex interferometric data. These techniques correct for limited depth-of-field and optical aberrations without the need for additional hardware. This paper aims to outline these computational methods, making them readily available to the research community. Achievements of the techniques will be highlighted, along with past and present challenges in implementing the techniques. Challenges such as phase instability and determination of the appropriate aberration correction have been largely overcome so that imaging of living tissues using ISAM and CAO is now possible. Computed imaging in optics is becoming a mature technology poised to make a significant impact in medicine and biology.

中文翻译:

计算光学干涉成像:方法、成就和挑战

三维高分辨率光学成像系统通常受到分辨率和景深之间的权衡以及成像系统或样品的缺陷的限制。计算光学干涉成像能够使用干涉合成孔径显微镜 (ISAM) 和计算自适应光学 (CAO) 等处理复杂干涉数据的方法来克服这些长期存在的限制。这些技术无需额外的硬件即可校正有限的景深和光学像差。本文旨在概述这些计算方法,使研究界可以轻松使用它们。将重点介绍这些技术的成就以及实施这些技术的过去和现在的挑战。相位不稳定性和确定适当的像差校正等挑战已在很大程度上得到克服,因此现在可以使用 ISAM 和 CAO 对活体组织进行成像。光学计算成像正在成为一项成熟的技术,有望对医学和生物学产生重大影响。
更新日期:2016-05-01
down
wechat
bug