当前位置: X-MOL 学术Mech. Ageing Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency.
Mechanisms of Ageing and Development ( IF 5.3 ) Pub Date : 2011-07-07 , DOI: 10.1016/j.mad.2011.06.005
Jenq-Lin Yang 1 , Peter Sykora , David M Wilson , Mark P Mattson , Vilhelm A Bohr
Affiliation  

Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system and plays an important role in synaptic plasticity required for learning and memory. Activation of glutamate ionotropic receptors promptly triggers membrane depolarization and Ca(2+) influx, resulting in the activation of several different protein kinases and transcription factors. For example, glutamate-mediated Ca(2+) influx activates Ca(2+)/calmodulin-dependent kinase, protein kinase C, and mitogen activated protein kinases resulting in activation of transcription factors such as cyclic AMP response element binding protein (CREB). Abnormally prolonged exposure to glutamate causes neuronal injury, and such "excitotoxicity" has been implicated in many acute and chronic diseases including ischemic stroke, epilepsy, amyotrophic lateral sclerosis, Alzheimer's, Huntington's and Parkinson's diseases. Interestingly, although glutamate-induced Ca(2+) influx can cause DNA damage by a mitochondrial reactive oxygen species-mediated mechanism, the Ca(2+) simultaneously activates CREB, resulting in up-regulation of the DNA repair and redox protein apurinic/apyrimidinic endonuclease 1. Here, we review connections between physiological or aberrant glutamate receptor activation, Ca(2+)-mediated signaling, oxidative DNA damage and repair efficiency, and neuronal vulnerability. We conclude that glutamate signaling involves an adaptive cellular stress response pathway that enhances DNA repair capability, thereby protecting neurons against injury and disease.

中文翻译:

兴奋性神经递质谷氨酸盐刺激 DNA 修复以增加神经元弹性。

谷氨酸是脊椎动物中枢神经系统中含量最丰富的兴奋性神经递质,在学习和记忆所需的突触可塑性中起着重要作用。谷氨酸离子型受体的激活会立即触发膜去极化和 Ca(2+) 流入,从而导致几种不同的蛋白激酶和转录因子的激活。例如,谷氨酸介导的 Ca(2+) 流入激活 Ca(2+)/钙调蛋白依赖性激酶、蛋白激酶 C 和丝裂原激活的蛋白激酶,从而激活转录因子,如环 AMP 反应元件结合蛋白 (CREB) . 异常长时间暴露于谷氨酸盐会导致神经元损伤,这种“兴奋性毒性”与许多急慢性疾病有关,包括缺血性中风、癫痫、肌萎缩侧索硬化症、阿尔茨海默病、亨廷顿病和帕金森病。有趣的是,虽然谷氨酸诱导的 Ca(2+) 流入可通过线粒体活性氧介导的机制导致 DNA 损伤,但 Ca(2+) 同时激活 CREB,导致 DNA 修复和氧化还原蛋白脱嘌呤/无嘧啶核酸内切酶 1. 在这里,我们回顾了生理或异常谷氨酸受体激活、Ca(2+) 介导的信号、氧化性 DNA 损伤和修复效率以及神经元脆弱性之间的联系。我们得出结论,谷氨酸信号涉及一种适应性细胞应激反应途径,可增强 DNA 修复能力,从而保护神经元免受损伤和疾病。尽管谷氨酸诱导的 Ca(2+) 流入可通过线粒体活性氧介导的机制导致 DNA 损伤,但 Ca(2+) 同时激活 CREB,导致 DNA 修复和氧化还原蛋白无嘌呤/无嘧啶核酸内切酶的上调1. 在这里,我们回顾了生理或异常谷氨酸受体激活、Ca(2+) 介导的信号、氧化性 DNA 损伤和修复效率以及神经元脆弱性之间的联系。我们得出结论,谷氨酸信号涉及一种适应性细胞应激反应途径,可增强 DNA 修复能力,从而保护神经元免受损伤和疾病。尽管谷氨酸诱导的 Ca(2+) 流入可通过线粒体活性氧介导的机制导致 DNA 损伤,但 Ca(2+) 同时激活 CREB,导致 DNA 修复和氧化还原蛋白无嘌呤/无嘧啶核酸内切酶的上调1. 在这里,我们回顾了生理或异常谷氨酸受体激活、Ca(2+) 介导的信号、氧化性 DNA 损伤和修复效率以及神经元脆弱性之间的联系。我们得出结论,谷氨酸信号涉及一种适应性细胞应激反应途径,可增强 DNA 修复能力,从而保护神经元免受损伤和疾病。导致 DNA 修复和氧化还原蛋白无嘌呤/无嘧啶核酸内切酶 1 的上调。在这里,我们回顾了生理或异常谷氨酸受体激活、Ca(2+) 介导的信号、氧化性 DNA 损伤和修复效率以及神经元脆弱性之间的联系. 我们得出结论,谷氨酸信号涉及一种适应性细胞应激反应途径,可增强 DNA 修复能力,从而保护神经元免受损伤和疾病。导致 DNA 修复和氧化还原蛋白无嘌呤/无嘧啶核酸内切酶 1 的上调。在这里,我们回顾了生理或异常谷氨酸受体激活、Ca(2+) 介导的信号、氧化性 DNA 损伤和修复效率以及神经元脆弱性之间的联系. 我们得出结论,谷氨酸信号涉及一种适应性细胞应激反应途径,可增强 DNA 修复能力,从而保护神经元免受损伤和疾病。
更新日期:2011-06-25
down
wechat
bug