当前位置: X-MOL 学术FEMS Microbiol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms for activating bacterial RNA polymerase.
FEMS Microbiology Reviews ( IF 10.1 ) Pub Date : 2010-07-16 , DOI: 10.1111/j.1574-6976.2010.00239.x
Tamaswati Ghosh 1 , Daniel Bose , Xiaodong Zhang
Affiliation  

Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP) enzymes and is highly regulated through the action of gene regulatory complexes. Important mechanistic insights have been gained from structural studies on multisubunit RNAP from bacteria, yeast and archaea, although the initiation process that involves the conversion of the inactive transcription complex to an active one has yet to be fully understood. RNAPs are unambiguously closely related in structure and function across all kingdoms of life and have conserved mechanisms. In bacteria, sigma (sigma) factors direct RNAP to specific promoter sites and the RNAP/sigma holoenzyme can either form a stable closed complex that is incompetent for transcription (as in the case of sigma(54)) or can spontaneously proceed to an open complex that is competent for transcription (as in the case of sigma(70)). The conversion of the RNAP/sigma(54) closed complex to an open complex requires ATP hydrolysis by enhancer-binding proteins, hence providing an ideal model system for studying the initiation process biochemically and structurally. In this review, we present recent structural studies of the two major bacterial RNAP holoenzymes and focus on mechanistic advances in the transcription initiation process via enhancer-binding proteins.

中文翻译:

激活细菌RNA聚合酶的机制。

基因转录是由 RNA 聚合酶 (RNAP) 酶进行的基本细胞过程,并通过基因调控复合物的作用受到高度调控。对来自细菌、酵母和古细菌的多亚基 RNAP 的结构研究已经获得了重要的机制见解,尽管尚未完全了解涉及将非活性转录复合物转化为活性转录复合物的起始过程。RNAPs 在所有生命王国的结构和功能上都明确地密切相关,并且具有保守的机制。在细菌中,sigma (sigma) 因子将 RNAP 引导至特定的启动子位点,并且 RNAP/sigma 全酶可以形成不能进行转录的稳定封闭复合体(如 sigma(54) 的情况),或者可以自发地形成一个开放复合体,即能够进行转录(如 sigma(70) 的情况)。RNAP/sigma(54) 封闭复合物向开放复合物的转化需要增强子结合蛋白的 ATP 水解,因此为从生化和结构上研究起始过程提供了理想的模型系统。在这篇综述中,我们介绍了两种主要细菌 RNAP 全酶的最新结构研究,并重点关注通过增强子结合蛋白在转录起始过程中的机制进展。RNAP/sigma(54) 封闭复合物向开放复合物的转化需要增强子结合蛋白的 ATP 水解,因此为从生化和结构上研究起始过程提供了理想的模型系统。在这篇综述中,我们介绍了两种主要细菌 RNAP 全酶的最新结构研究,并重点关注通过增强子结合蛋白在转录起始过程中的机制进展。RNAP/sigma(54) 封闭复合物向开放复合物的转化需要增强子结合蛋白的 ATP 水解,因此为从生化和结构上研究起始过程提供了理想的模型系统。在这篇综述中,我们介绍了两种主要细菌 RNAP 全酶的最新结构研究,并重点关注通过增强子结合蛋白在转录起始过程中的机制进展。
更新日期:2010-09-01
down
wechat
bug