当前位置: X-MOL 学术Front. Neural Circuits › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing.
Frontiers in Neural Circuits ( IF 3.4 ) Pub Date : 2019-08-07 , DOI: 10.3389/fncir.2019.00052
Shane M O'Mara 1 , John P Aggleton 2
Affiliation  

Memory research remains focused on just a few brain structures-in particular, the hippocampal formation (the hippocampus and entorhinal cortex). Three key discoveries promote this continued focus: the striking demonstrations of enduring anterograde amnesia after bilateral hippocampal damage; the realization that synapses in the hippocampal formation are plastic e.g., when responding to short bursts of patterned stimulation ("long-term potentiation" or LTP); and the discovery of a panoply of spatially-tuned cells, principally surveyed in the hippocampal formation (place cells coding for position; head-direction cells, providing compass-like information; and grid cells, providing a metric for 3D space). Recent anatomical, behavioral, and electrophysiological work extends this picture to a growing network of subcortical brain structures, including the anterior thalamic nuclei, rostral midline thalamic nuclei, and the claustrum. There are, for example, spatially-tuned cells in all of these regions, including cells with properties similar to place cells of the hippocampus proper. These findings add new perspectives to what had been originally been proposed-but often overlooked-half a century ago: that damage to an extended network of structures connected to the hippocampal formation results in diencephalic amnesia. We suggest these new findings extend spatial signaling in the brain far beyond the hippocampal formation, with profound implications for theories of the neural bases of spatial and mnemonic functions.

中文翻译:


海马体之外(远)的空间和记忆:许多皮层下结构也支持认知映射和助记处理。



记忆研究仍然集中在少数大脑结构上,特别是海马结构(海马和内嗅皮层)。三个关键发现促进了这一持续关注:双侧海马损伤后持久的顺行性遗忘症的惊人表现;认识到海马结构中的突触是可塑的,例如,当对短时突发的模式刺激做出反应时(“长时程增强”或 LTP);还发现了一系列空间调谐细胞,主要在海马结构中进行调查(位置细胞编码位置;头部方向细胞提供类似指南针的信息;网格细胞提供 3D 空间的度量)。最近的解剖学、行为学和电生理学工作将这一图景扩展到了不断增长的皮层下大脑结构网络,包括丘脑前核、丘脑嘴中线核和屏状核。例如,所有这些区域中都存在空间调谐的细胞,包括具有与海马体本身的位置细胞相似的特性的细胞。这些发现为半个世纪前最初提出但经常被忽视的观点增添了新的视角:与海马结构相连的扩展结构网络的损伤会导致间脑性遗忘症。我们认为这些新发现将大脑中的空间信号扩展到海马结构之外,对空间和记忆功能的神经基础理论具有深远的影响。
更新日期:2019-11-01
down
wechat
bug