当前位置: X-MOL 学术Vis. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mitochondrial absorption of short wavelength light drives primate blue retinal cones into glycolysis which may increase their pace of aging
Visual Neuroscience ( IF 1.1 ) Pub Date : 2019-06-04 , DOI: 10.1017/s0952523819000063
Jaimie Hoh Kam 1 , Tobias W Weinrich 1 , Harpreet Sangha 1 , Michael B Powner 2 , Robert Fosbury 1, 3 , Glen Jeffery 1
Affiliation  

Photoreceptors have high energy demands and densely packed mitochondria through which light passes before phototransduction. Old world primates including humans have three cone photoreceptor types mediating color vision with short (S blue), medium (M green), and long (L red) wavelength sensitivities. However, S-cones are enigmatic. They comprise <10% of the total cone population, their responses saturate early, and they are susceptible in aging and disease. Here, we show that primate S-cones actually have few mitochondria and are fueled by glycolysis, not by mitochondrial respiration. Glycolysis has a limited ability to sustain activity, potentially explaining early S-cone saturation. Mitochondria act as optical filters showing reduced light transmission at 400–450 nm where S-cones are most sensitive (420 nm). This absorbance is likely to arise in a mitochondrial porphyrin that absorbs strongly in the Soret band. Hence, reducing mitochondria will improve S-cone sensitivity but result in increased glycolysis as an alternative energy source, potentially increasing diabetic vulnerability due to restricted glucose access. Further, glycolysis carries a price resulting in premature functional decline as seen in aged S-cones. Soret band absorption may also impact on mitochondrial rich M and L cones by reducing sensitivity at the lower end of their spectral sensitivity range resulting in increased differentiation from S-cone responses. These data add to the list of unique characteristic of S-cones and may also explain aspects of their vulnerability.

中文翻译:

短波长光的线粒体吸收驱动灵长类动物的蓝色视网膜锥进入糖酵解,这可能会增加它们的衰老速度

光感受器具有高能量需求和密集的线粒体,光在光转导之前通过这些线粒体。包括人类在内的旧大陆灵长类动物具有三种视锥细胞类型,可调节具有短(S 蓝色)、中(M 绿色)和长(L 红色)波长敏感性的色觉。然而,S-锥体是神秘的。它们占锥体总人口的 10% 以下,它们的反应很早就饱和,而且它们容易老化和疾病。在这里,我们表明灵长类动物的 S 锥实际上几乎没有线粒体,并且由糖酵解而不是线粒体呼吸驱动。糖酵解维持活性的能力有限,这可能解释了早期的 S 锥饱和。线粒体充当滤光器,在 400–450 nm 处显示降低的光透射,其中 S 锥最敏感(420 nm)。这种吸光度很可能出现在在 Soret 带中强烈吸收的线粒体卟啉中。因此,减少线粒体会提高 S 锥的敏感性,但会导致糖酵解增加作为替代能源,由于葡萄糖获取受限,可能会增加糖尿病的易感性。此外,糖酵解的代价是导致过早的功能衰退,如在老化的 S 锥中所见。Soret 带吸收也可能通过降低其光谱灵敏度范围低端的灵敏度来影响富含线粒体的 M 和 L 锥体,从而导致与 S 锥体响应的分化增加。这些数据添加到 S 锥的独特特征列表中,也可以解释其脆弱性的各个方面。减少线粒体将提高 S-cone 敏感性,但会导致糖酵解增加作为替代能源,由于葡萄糖获取受限,可能会增加糖尿病的易感性。此外,糖酵解的代价是导致过早的功能衰退,如在老化的 S 锥中所见。Soret 带吸收也可能通过降低其光谱灵敏度范围低端的灵敏度来影响富含线粒体的 M 和 L 锥体,从而导致与 S 锥体响应的分化增加。这些数据添加到 S 锥的独特特征列表中,也可以解释其脆弱性的各个方面。减少线粒体将提高 S-cone 敏感性,但会导致糖酵解增加作为替代能源,由于葡萄糖获取受限,可能会增加糖尿病的易感性。此外,糖酵解的代价是导致过早的功能衰退,如在老化的 S 锥中所见。Soret 带吸收也可能通过降低其光谱灵敏度范围低端的灵敏度来影响富含线粒体的 M 和 L 锥体,从而导致与 S 锥体响应的分化增加。这些数据添加到 S 锥的独特特征列表中,也可以解释其脆弱性的各个方面。糖酵解需要付出代价,导致功能过早衰退,如老化的 S-锥体所示。Soret 带吸收也可能通过降低其光谱灵敏度范围低端的灵敏度来影响富含线粒体的 M 和 L 锥体,从而导致与 S 锥体响应的分化增加。这些数据添加到 S 锥的独特特征列表中,也可以解释其脆弱性的各个方面。糖酵解需要付出代价,导致功能过早衰退,如老化的 S-锥体所示。Soret 带吸收也可能通过降低其光谱灵敏度范围低端的灵敏度来影响富含线粒体的 M 和 L 锥体,从而导致与 S 锥体响应的分化增加。这些数据添加到 S 锥的独特特征列表中,也可以解释其脆弱性的各个方面。
更新日期:2019-06-04
down
wechat
bug