当前位置: X-MOL 学术Biofabrication › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting.
Biofabrication ( IF 8.2 ) Pub Date : 2020-01-31 , DOI: 10.1088/1758-5090/ab4a20
Elahe Masaeli 1 , Valérie Forster , Serge Picaud , Fereshte Karamali , Mohammad Hossein Nasr-Esfahani , Christophe Marquette
Affiliation  

The mammalian retina contains multiple cellular layers, each carrying out a specific task. Such a controlled organization should be considered as a crucial factor for designing retinal therapies. The maintenance of retinal layered complexity through the use of scaffold-free techniques has recently emerged as a promising approach for clinical ocular tissue engineering. In an attempt to fabricate such layered retinal model, we are proposing herein a unique inkjet bioprinting system applied to the deposition of a photoreceptor cells (PRs) layer on top of a bioprinted retinal pigment epithelium (RPE), in a precise arrangement and without any carrier material. The results showed that, after bioprinting, both RPE and PRs were well positioned in a layered structure and expressed their structural markers, which was further demonstrated by ZO1, MITF, rhodopsin, opsin B, opsin R/G and PNA immunostaining, three days after bioprinting. We also showed that considerable amounts of human vascular endothelial growth factors (hVEGF) were released from the RPE printed layer, which confirmed the formation of a functional RPE monolayer after bioprinting. Microstructures of bioprinted cells as well as phagocytosis of photoreceptor outer segments by apical RPE microvilli were finally established through transmission electron microscopy (TEM) imaging. In summary, using this carrier-free bioprinting method, it was possible to develop a reasonable in vitro retina model for studying some sight-threatening diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).

中文翻译:

通过高分辨率3维喷墨生物打印对视网膜进行组织工程设计。

哺乳动物的视网膜包含多个细胞层,每个都执行特定的任务。这种受控的组织应被视为设计视网膜疗法的关键因素。通过使用无支架技术来维持视网膜分层的复杂性最近已成为临床眼部组织工程的一种有前途的方法。为了制造这种分层的视网膜模型,我们在此提出一种独特的喷墨生物打印系统,该系统以精确的方式且没有任何布置,可应用于将光感受器细胞(PRs)层沉积在生物打印的视网膜色素上皮(RPE)之上。载体材料。结果表明,经过生物打印后,RPE和PR都很好地位于分层结构中并表达了它们的结构标记,这由ZO1,MITF,生物印染后三天,视紫红质,视蛋白B,视蛋白R / G和PNA免疫染色。我们还显示,从RPE印刷层释放了大量的人血管内皮生长因子(hVEGF),这证实了生物印刷后功能性RPE单层的形成。最终通过透射电子显微镜(TEM)成像,建立了生物打印细胞的微结构以及通过顶端RPE微绒毛对光感受器外部节段的吞噬作用。总之,使用这种无载体的生物打印方法,有可能建立一个合理的体外视网膜模型来研究某些视力障碍疾病,例如与年龄有关的黄斑变性(AMD)和色素性视网膜炎(RP)。我们还显示,从RPE印刷层释放了大量的人血管内皮生长因子(hVEGF),这证实了生物印刷后功能性RPE单层的形成。最终通过透射电子显微镜(TEM)成像,建立了生物打印细胞的微结构以及通过顶端RPE微绒毛对光感受器外部节段的吞噬作用。总之,使用这种无载体的生物打印方法,有可能建立一个合理的体外视网膜模型来研究某些视力障碍疾病,例如与年龄有关的黄斑变性(AMD)和色素性视网膜炎(RP)。我们还显示,从RPE印刷层释放了大量的人血管内皮生长因子(hVEGF),这证实了生物印刷后功能性RPE单层的形成。最终通过透射电子显微镜(TEM)成像,建立了生物打印细胞的微结构以及通过顶端RPE微绒毛对光感受器外部节段的吞噬作用。总之,使用这种无载体的生物打印方法,有可能建立一个合理的体外视网膜模型来研究某些视力障碍疾病,例如与年龄有关的黄斑变性(AMD)和色素性视网膜炎(RP)。最终通过透射电子显微镜(TEM)成像,建立了生物打印细胞的微结构以及通过顶端RPE微绒毛对光感受器外部节段的吞噬作用。总之,使用这种无载体的生物打印方法,有可能建立一个合理的体外视网膜模型来研究某些视力障碍疾病,例如与年龄有关的黄斑变性(AMD)和色素性视网膜炎(RP)。最终通过透射电子显微镜(TEM)成像,建立了生物打印细胞的微结构以及通过顶端RPE微绒毛对光感受器外部节段的吞噬作用。总之,使用这种无载体的生物打印方法,有可能建立一个合理的体外视网膜模型来研究某些视力障碍疾病,例如与年龄有关的黄斑变性(AMD)和色素性视网膜炎(RP)。
更新日期:2020-01-31
down
wechat
bug