当前位置: X-MOL 学术Adv. Appl. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis.
Advances in Applied Microbiology ( IF 5.515 ) Pub Date : 2018-09-06 , DOI: 10.1016/bs.aambs.2018.07.001
Clifford Morrison 1 , Elizabeth Heitmann 2 , William Armiger 3 , David Dodds 3 , Mattheos Koffas 4
Affiliation  

Two seemingly distinct fields, industrial biocatalysis and microbial electrosynthesis, can be viewed together through the lens of electrochemical bioreactor technology in order to highlight the challenges that exist in creating a versatile platform technology for use in chemical and biological applications. Industrial biocatalysis applications requiring NAD(P)H to perform redox transformations often necessitate convoluted coupled-enzyme regeneration systems to regenerate reduced cofactor, NAD(P)H from oxidized cofactor, NAD(P). Renewed interest in continuously recycling the cofactor via electrochemical reduction is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). Microbial electrosynthesis is a form of microbially driven catalysis in which electricity is supplied to living microorganisms for the production of industrially relevant chemical products at higher carbon efficiencies and yields compared with traditional, nonelectrically driven, fermentations. The fundamental biochemistry of these organisms as related to selected biochemical redox processes will be explored in order to highlight opportunities to devise strategies for taking advantage of these biochemical processes in engineered systems.



中文翻译:

用于生物催化和微生物电合成的电化学生物反应器技术。

可以通过电化学生物反应器技术的视角一起观察两个看似截然不同的领域,即工业生物催化和微生物电合成,以突显在创建用于化学和生物应用的通用平台技术时所面临的挑战。需要NAD(P)H进行氧化还原转化的工业生物催化应用通常需要旋绕的耦合酶再生系统才能从氧化的辅因子NAD(P)再生还原的辅因子NAD(P)H。进行电化学反应的低成本,易于监测反应进程以及直接回收产物的动机激发了人们对通过电化学还原连续回收辅因子的兴趣。然而,电化学辅因子再生方法始终会产生不定还原的辅因子副产物,从而导致输入NAD(P)的非生产性损失。微生物电合成是微生物驱动催化的一种形式,其中与传统的非电驱动发酵相比,以较高的碳效率和产率向活的微生物供电以生产与工业相关的化学产品。将探讨与选定的生物化学氧化还原过程有关的这些生物的基本生物化学,以突出开发设计策略以利用工程系统中的这些生物化学过程的机会。微生物电合成是微生物驱动催化的一种形式,其中与传统的非电驱动发酵相比,以较高的碳效率和产率向活的微生物供电以生产与工业相关的化学产品。将探讨与选定的生物化学氧化还原过程有关的这些生物的基本生物化学,以突出开发设计策略以利用工程系统中的这些生物化学过程的机会。微生物电合成是微生物驱动催化的一种形式,其中与传统的非电驱动发酵相比,以较高的碳效率和产率向活的微生物供电以生产与工业相关的化学产品。将探讨与选定的生物化学氧化还原过程有关的这些生物的基本生物化学,以突出开发设计策略以利用工程系统中的这些生物化学过程的机会。

更新日期:2018-09-06
down
wechat
bug