当前位置: X-MOL 学术Life Sci. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in space radiation physics and transport at NASA.
Life Sciences in Space Research ( IF 2.9 ) Pub Date : 2019-07-10 , DOI: 10.1016/j.lssr.2019.07.003
John W Norbury 1 , Tony C Slaba 1 , Sukesh Aghara 2 , Francis F Badavi 3 , Steve R Blattnig 1 , Martha S Clowdsley 1 , Lawrence H Heilbronn 4 , Kerry Lee 5 , Khin M Maung 6 , Christopher J Mertens 1 , Jack Miller 7 , Ryan B Norman 1 , Chris A Sandridge 1 , Robert Singleterry 1 , Nikolai Sobolevsky 8 , Jan L Spangler 9 , Lawrence W Townsend 4 , Charles M Werneth 1 , Kathryn Whitman 5 , John W Wilson 3 , Sharon Xiaojing Xu 1 , Cary Zeitlin 10
Affiliation  

The space radiation environment is a complex mixture of particle types and energies originating from sources inside and outside of the galaxy. These environments may be modified by the heliospheric and geomagnetic conditions as well as planetary bodies and vehicle or habitat mass shielding. In low Earth orbit (LEO), the geomagnetic field deflects a portion of the galactic cosmic rays (GCR) and all but the most intense solar particle events (SPE). There are also dynamic belts of trapped electrons and protons with low to medium energy and intense particle count rates. In deep space, the GCR exposure is more severe than in LEO and varies inversely with solar activity. Unpredictable solar storms also present an acute risk to astronauts if adequate shielding is not provided. Near planetary surfaces such as the Earth, moon or Mars, secondary particles are produced when the ambient deep space radiation environment interacts with these surfaces and/or atmospheres. These secondary particles further complicate the local radiation environment and modify the associated health risks. Characterizing the radiation fields in this vast array of scenarios and environments is a challenging task and is currently accomplished with a combination of computational models and dosimetry. The computational tools include models for the ambient space radiation environment, mass shielding geometry, and atomic and nuclear interaction parameters. These models are then coupled to a radiation transport code to describe the radiation field at the location of interest within a vehicle or habitat. Many new advances in these models have been made in the last decade, and the present review article focuses on the progress and contributions made by workers and collaborators at NASA Langley Research Center in the same time frame. Although great progress has been made, and models continue to improve, significant gaps remain and are discussed in the context of planned future missions. Of particular interest is the juxtaposition of various review committee findings regarding the accuracy and gaps of combined space radiation environment, physics, and transport models with the progress achieved over the past decade. While current models are now fully capable of characterizing radiation environments in the broad range of forecasted mission scenarios, it should be remembered that uncertainties still remain and need to be addressed.



中文翻译:

NASA在空间辐射物理学和运输方面的进展。

空间辐射环境是来自银河内部和外部的粒子类型和能量的复杂混合物。这些环境可能会因日球和地磁条件以及行星体和飞行器或生境质量屏蔽而发生变化。在低地球轨道(LEO)中,地磁场会使部分银河宇宙射线(GCR)偏转,除了最强烈的太阳粒子事件(SPE)以外的所有偏转。还有低能量到中等能量和高颗粒计数率的动态电子束缚带。在深空,GCR暴露比在LEO中更为严重,并且与太阳活动成反比。如果没有提供足够的防护罩,不可预料的太阳风暴也会给宇航员带来严重的危险。在地球,月球或火星等行星表面附近,当周围深空辐射环境与这些表面和/或大气相互作用时,会产生二次颗粒。这些次级粒子进一步使局部辐射环境复杂化,并改变了相关的健康风险。在如此众多的场景和环境中表征辐射场是一项艰巨的任务,目前已通过计算模型和剂量学的组合来完成。该计算工具包括用于周围空间辐射环境,质量屏蔽几何以及原子和核相互作用参数的模型。然后将这些模型耦合到辐射传输代码,以描述车辆或栖息地内感兴趣位置的辐射场。在过去的十年中,这些模型取得了许多新的进步,本篇评论文章重点介绍了美国宇航局兰利研究中心在同一时期内工作人员和合作者所取得的进步和所作的贡献。尽管已经取得了很大的进步,并且模型不断改进,但是仍然存在巨大的差距,并将在计划中的未来任务中进行讨论。特别令人感兴趣的是,各种审查委员会关于并存的空间辐射环境,物理学和运输模型的准确性和差距与过去十年取得的进展并存的结论并列。尽管目前的模型现在完全能够在各种预测的任务场景中表征辐射环境,但应记住,不确定性仍然存在,需要加以解决。

更新日期:2019-07-10
down
wechat
bug