当前位置: X-MOL 学术Life Sci. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of nitrates and perchlorates by laser ablation of sodium chloride in simulated Martian atmospheres. Implications for their formation by electric discharges in dust devils.
Life Sciences in Space Research ( IF 2.5 ) Pub Date : 2019-02-26 , DOI: 10.1016/j.lssr.2019.02.007
Pável U Martínez-Pabello 1 , Rafael Navarro-González 1 , Xavier Walls 1 , Teresa Pi-Puig 2 , José L González-Chávez 3 , José G de la Rosa 1 , Paola Molina 1 , Olivia Zamora 4
Affiliation  

Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO2, 2% N2 and 2% Ar; and (2) 66% CO2, 33% N2 and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO3 = 1.6–6.0%), and sodium perchlorate (NaClO4 ∼ 0.2–0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNO3NaClO4 (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NO3ClO4 (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl2, NaCl, CaCl2, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.



中文翻译:

在模拟火星大气中通过激光烧蚀氯化钠来生产硝酸盐和高氯酸盐。尘埃中的放电对其形成的影响。

硝酸盐和高氯酸盐都存在于地球和火星上。在火星环境中,高氯酸根高于硝酸盐,而在地球上则相反。这暗示着负责它们形成的机制对于两个行星都是不同的。形成它们所需的化学元素是氮和氯,它们分别存在于大气和表面中。火星大气中的尘埃会引起大气扰动,从而导致尘埃和沙尘暴的发展。尘鬼同时包含两种化学元素,并且通常会产生高电场,从而触发放电的形成。在这里,我们介绍了在两种不同的模拟气氛中使用激光烧蚀氯化钠(NaCl)板对该现象进行的实验室实验:(1)96%CO2,2%N 2和2%Ar; 和(2)66%CO 2,33%N 2和1%的Ar。通过不同的分析技术对凝结和积聚在反应器壁上的粉尘进行了分析,这些技术包括傅里叶变换红外光谱,使用偶氮染料的可见光谱,与质谱联用的热重分析/同时热分析,粉末X射线衍射和离子色谱。烧蚀粉尘的主要成分分别为 NaCl≥91.5%,硝酸钠(NaNO 3 = 1.6–6.0%)和高氯酸钠(NaClO 4 〜0.2–0.3%)。有趣的是,这些盐是在今天与火星有关的干燥过程中形成的。使用热化学模型来理解导致这些盐在气相中形成的化学步骤。的NØ3氯化钠Ø4该过程的(wt / wt)比估计为5.0至30.0;相较于火星(没有3-4-(wt / wt))从0.004到0.13)。这意味着气态NaCl没有通过放电过程有效地氧化成高氯酸盐。我们建议改为通过尘埃魔鬼中产生的放电使尘埃中存在的氯化物矿物挥发,将气态金属氯化物(例如MgCl 2,NaCl,CaCl 2,KCl)供应到大气中,然后通过光化学将其氧化为高氯酸盐流程。需要进一步的工作来评估这种可能来源的相对贡献。

更新日期:2019-02-26
down
wechat
bug