当前位置: X-MOL 学术Anal. Bioanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study of metabolism and identification of productive regions in filamentous fungi via spatially resolved time-of-flight secondary ion mass spectrometry.
Analytical and Bioanalytical Chemistry ( IF 3.8 ) Pub Date : null , DOI: 10.1007/s00216-019-01980-2
Lukas Veiter 1, 2 , Markus Kubicek 3 , Herbert Hutter 3 , Ernst Pittenauer 3 , Christoph Herwig 1, 2 , Christoph Slouka 1, 2
Affiliation  

Filamentous fungi are well-established production hosts that feature a strong interconnection between morphology, physiology, and productivity. For penicillin production in Penicillium chrysogenum, industrial processes frequently favor a pellet morphology comprising compact hyphal agglomerates. Inherently these tightly packed entanglements lead to inactive, degrading sections within the pellet's core because of limitations. Optimal process design requires detailed knowledge of the nature of the limitations and localization of productive zones in the biomass, which is generally obtainable through modeling and complex analytical methods such as oxygen microelectrode and histological investigations. Methods that combine physiological and morphological insight are crucial yet scarce for filamentous fungi. In this study, we used time-of-flight secondary ion mass spectrometry in combination with oxygen and glucose tracer substrates, requiring little effort for sample preparation and measurement. Our method is capable of analyzing oxygen and substrate uptake in various morphological structures by the use of 18O as a tracer. In parallel, we can assess productive biomass regions through identification of penicillin mass fragments to simultaneously study oxygen diffusion, substrate incorporation, and productive biomass sections.

中文翻译:

通过空间分辨飞行时间二次离子质谱分析研究丝状真菌的代谢和生产区域。

丝状真菌是成熟的生产宿主,在形态,生理和生产力之间具有很强的相互联系。为了在产黄青霉中生产青霉素,工业过程通常倾向于包含紧密的菌丝附聚物的颗粒形态。由于局限性,这些紧密堆积的缠结本来会导致颗粒芯内的非活性,降解部分。最佳过程设计需要详细了解生物质中生产区的局限性和位置,这通常可以通过建模和复杂的分析方法(例如氧气微电极和组织学研究)获得。结合生理学和形态学见解的方法对于丝状真菌而言至关重要,但仍然很少。在这个研究中,我们将飞行时间二次离子质谱仪与氧气和葡萄糖示踪剂底物结合使用,几乎不需要样品制备和测量。通过使用18O作为示踪剂,我们的方法能够分析各种形态结构中的氧气和底物吸收。同时,我们可以通过鉴定青霉素质量片段来评估生产性生物质区域,同时研究氧扩散,底物掺入和生产性生物质部分。
更新日期:2020-03-16
down
wechat
bug