当前位置: X-MOL 学术IEEE Trans. Instrum. Meas. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene Devices for Tabletop and High-Current Quantized Hall Resistance Standards
IEEE Transactions on Instrumentation and Measurement ( IF 5.6 ) Pub Date : 2019-06-01 , DOI: 10.1109/tim.2018.2882958
Albert F. Rigosi , Alireza R. Panna , Shamith U. Payagala , Mattias Kruskopf , Marlin E. Kraft , George R. Jones , Bi-Yi Wu , Hsin-Yen Lee , Yanfei Yang , Jiuning Hu , Dean G. Jarrett , David B. Newell , Randolph E. Elmquist

We report the performance of a quantum Hall resistance standard based on epitaxial graphene maintained in a 5-T tabletop cryocooler system. This quantum resistance standard requires no liquid helium and can operate continuously, allowing year-round accessibility to quantized Hall resistance measurements. The $\nu = 2$ plateau, with a value of $R_{\mathrm {K}}$ /2, also seen as $R_{\mathrm {H}}$ , is used to scale to 1 $\text{k}\Omega $ using a binary cryogenic current comparator (BCCC) bridge and a direct current comparator (DCC) bridge. The uncertainties achieved with the BCCC are such as those obtained in the state-of-the-art measurements using GaAs-based devices. BCCC scaling methods can achieve large resistance ratios of 100 or more, and while room temperature DCC bridges have smaller ratios and lower current sensitivity, they can still provide alternate resistance scaling paths without the need for cryogens and superconducting electronics. Estimates of the relative uncertainties of the possible scaling methods are provided in this report, along with a discussion of the advantages of several scaling paths. The tabletop system limits are addressed as are potential solutions for using graphene standards at higher currents.

中文翻译:

用于桌面和高电流量化霍尔电阻标准的石墨烯器件

我们报告了基于外延石墨烯的量子霍尔电阻标准的性能,该标准保持在 5 吨台式低温冷却器系统中。这种量子电阻标准不需要液氦并且可以连续运行,从而可以全年进行量化霍尔电阻测量。这 $\nu = 2$ 高原,值为 $R_{\mathrm {K}}$ /2,也被视为 $R_{\mathrm {H}}$ , 用于缩放到 1 $\text{k}\Omega $ 使用二进制低温电流比较器 (BCCC) 桥和直流比较器 (DCC) 桥。使用 BCCC 获得的不确定度与使用基于 GaAs 的设备在最先进的测量中获得的不确定度相同。BCCC 缩放方法可以实现 100 或更高的大电阻比,虽然室温 DCC 桥具有较小的比值和较低的电流灵敏度,但它们仍然可以提供替代的电阻缩放路径,而无需冷冻剂和超导电子设备。本报告提供了对可能的缩放方法的相对不确定性的估计,并讨论了几种缩放路径的优势。解决了桌面系统限制以及在更高电流下使用石墨烯标准的潜在解决方案。
更新日期:2019-06-01
down
wechat
bug