当前位置: X-MOL 学术Comput. Vis. Image Underst. › 论文详情
Optimal-Flow Minimum-Cost Correspondence Assignment in Particle Flow Tracking.
Computer Vision and Image Understanding ( IF 2.645 ) Pub Date : 2011-07-02 , DOI: 10.1016/j.cviu.2011.01.001
Alexandre Matov,Marcus M Edvall,Ge Yang,Gaudenz Danuser

A diversity of tracking problems exists in which cohorts of densely packed particles move in an organized fashion, however the stability of individual particles within the cohort is low. Moreover, the flows of cohorts can regionally overlap. Together, these conditions yield a complex tracking scenario that can not be addressed by optical flow techniques that assume piecewise coherent flows, or by multiparticle tracking techniques that suffer from the local ambiguity in particle assignment. Here, we propose a graph-based assignment of particles in three consecutive frames to recover from image sequences the instantaneous organized motion of groups of particles, i.e. flows. The algorithm makes no a priori assumptions on the fraction of particles participating in organized movement, as this number continuously alters with the evolution of the flow fields in time. Graph-based assignment methods generally maximize the number of acceptable particles assignments between consecutive frames and only then minimize the association cost. In dense and unstable particle flow fields this approach produces many false positives. The here proposed approach avoids this via solution of a multi-objective optimization problem in which the number of assignments is maximized while their total association cost is minimized at the same time. The method is validated on standard benchmark data for particle tracking. In addition, we demonstrate its application to live cell microscopy where several large molecular populations with different behaviors are tracked.
更新日期:2019-11-01

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug