当前位置: X-MOL 学术Biodegradation › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products.
Biodegradation ( IF 3.1 ) Pub Date : 2019-02-28 , DOI: 10.1007/s10532-019-09871-0
Karen Rossmassler 1, 2 , Sunah Kim 1, 3 , Corey D Broeckling 4 , Sarah Galloway 4 , Jessica Prenni 4 , Susan K De Long 1
Affiliation  

Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.

中文翻译:

主要碳源对药物和个人护理产品的微生物组形成和生物转化的影响。

需要了解在混合微生物系统中促进降解药物和个人护理产品(PPCP)的微生物的生长和活性的条件,以塑造生物处理反应器中的微生物群落并管理工艺性能。可用的碳源会影响微生物群落结构,特定的碳源可能会添加到处理结束时的火车生物处理系统(例如土壤含水层处理[SAT])中,以选择一系列微生物系统型的生长和活性,这些微生物型共同降低目标PPCP。在本文中,探索了主要碳源对PPCP生物降解和微生物群落结构的影响,以确定有前途的碳源可用于PPCP生物处理。研究了六种主要碳源:酪蛋白氨基酸,两种腐殖酸和蛋白one的混合物(腐殖酸的含量高和低),糖蜜,有机酸混合物和苯酚。跟踪了五种PPCP(双氯芬酸,5-氟尿嘧啶,吉非贝齐,布洛芬和三氯生)的生物降解。发现主要碳源对微生物群落结构以及PPCP生物转化的速率和效率有不同的影响。在测试的主要碳源中,酪蛋白氨基酸,有机酸和苯酚显示出最快的生物转化。然而,以生物量归一化为基础,两种腐殖酸-pe混合物均表现出可比或更高的生物转化率。通过比较不同主要碳源的微生物群落,未分类的丰富度 跟踪了五种PPCP(双氯芬酸,5-氟尿嘧啶,吉非贝齐,布洛芬和三氯生)的生物降解。发现主要碳源对微生物群落结构以及PPCP生物转化的速率和效率有不同的影响。在测试的主要碳源中,酪蛋白氨基酸,有机酸和苯酚显示出最快的生物转化。然而,以生物量归一化为基础,两种腐殖酸-pe混合物均表现出可比或更高的生物转化率。通过比较不同主要碳源的微生物群落,未分类的丰富度 跟踪了五种PPCP(双氯芬酸,5-氟尿嘧啶,吉非贝齐,布洛芬和三氯生)的生物降解。发现主要碳源对微生物群落结构以及PPCP生物转化的速率和效率有不同的影响。在测试的主要碳源中,酪蛋白氨基酸,有机酸和苯酚显示出最快的生物转化。然而,以生物量归一化为基础,两种腐殖酸-pe混合物均表现出可比或更高的生物转化率。通过比较不同主要碳源的微生物群落,未分类的丰富度 酪蛋白氨基酸,有机酸和苯酚显示出最快的生物转化。然而,以生物量归一化为基础,两种腐殖酸-pe混合物均表现出可比或更高的生物转化率。通过比较不同主要碳源的微生物群落,未分类的丰富度 酪蛋白氨基酸,有机酸和苯酚显示出最快的生物转化。然而,以生物量归一化为基础,两种腐殖酸-pe混合物均表现出可比或更高的生物转化率。通过比较不同主要碳源的微生物群落,未分类的丰富度从统计学上讲,Beijerinckiaceae,Beijerinckia,鞘氨醇单胞菌,未归类的鞘氨菌科黄杆菌,未归类的根瘤菌Nevskia与特定PPCP的生物转化有统计学联系。
更新日期:2019-02-28
down
wechat
bug