当前位置: X-MOL 学术Org. Divers. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel Dreissena polymorpha
Organisms Diversity & Evolution ( IF 1.9 ) Pub Date : 2018-01-18 , DOI: 10.1007/s13127-017-0356-0
Anna Pavlicek 1 , Thomas Schwaha 1 , Andreas Wanninger 1
Affiliation  

Bivalvia is a taxon of aquatic mollusks that includes clams, oysters, mussels, and scallops. Within heterodont bivalves, Dreissena polymorpha is a small, mytiliform, freshwater mussel that develops indirectly via a planktotrophic veliger larva. Currently, only a few studies on bivalve neurogenesis are available, impeding the reconstruction of a ground pattern in Bivalvia. In order to inject novel data into this discussion, we describe herein the development of the serotonin-like and α-tubulin-like immunoreactive (lir) neuronal components of D. polymorpha from the early trochophore to the late veliger stage. Neurogenesis starts in the early trochophore stage at the apical pole with the appearance of one flask-shaped serotonin-lir cell. When larvae reach the veliger stage, four flask-shaped serotonin-lir cells are present in the apical organ. At the same time, the anlagen of the cerebral ganglia start to form at the base of the apical organ. From the apical organ, one pair of cerebro-visceral connectives projects posteriorly and connects to a posterior larval sensory organ that contains serotonin- and α-tubulin-like flask-shaped cells. Additional, paired serotonin-lir neurites originate from the apical organ and project into the velum. One unpaired stomatogastric serotonin-lir cell develops ventrally to the stomach at the veliger stage. The low number of serotonin-lir cells in the apical organ of bivalve veligers is shared with larvae of basally branching gastropods and scaphopods and is thus considered a feature of the last common ancestor of Conchifera, while the overall simplicity of the larval neural architecture appears to be a specific trait of Bivalvia.

中文翻译:

双壳类神经系统的基本模式重建:斑马贻贝 Dreissena polymorpha 的神经发生

双壳类是水生软体动物的一个分类单元,包括蛤、牡蛎、贻贝和扇贝。在异齿类双壳类动物中,Dreissena polymorpha 是一种小型的贻贝状淡水贻贝,通过浮游营养的扁贝幼虫间接发育。目前,只有少数关于双壳类神经发生的研究可用,阻碍了双壳类动物基础模式的重建。为了在此讨论中注入新的数据,我们在本文中描述了从早期承载体到晚期 veliger 阶段的 D.polymorpha 的血清素样和 α-微管蛋白样免疫反应 (lir) 神经元成分的发展。神经发生在顶端的早期滋养细胞阶段开始,出现一个烧瓶状的 5-羟色胺-lir 细胞。当幼虫到达 veliger 阶段时,顶端器官中存在四个烧瓶状的 5-羟色胺细胞。与此同时,大脑神经节的原原开始在顶端器官的基部形成。从顶端器官,一对脑 - 内脏结缔组织向后突出并连接到含有血清素和α-微管蛋白样烧瓶状细胞的后幼虫感觉器官。另外,成对的 5-羟色胺-lir 神经突起源于顶端器官并伸入帆布中。在 veliger 阶段,一个未配对的胃胃 5-羟色胺-lir 细胞发育到胃的腹侧。双壳贝类的顶端器官中的少量血清素-lir 细胞与基部分支的腹足类和舟足类的幼虫共享,因此被认为是 Conchifera 最后一个共同祖先的特征,而幼虫神经结构的整体简单性似乎是双壳纲的一个特定特征。大脑神经节的原原开始在顶端器官的基部形成。从顶端器官,一对脑 - 内脏结缔组织向后突出并连接到含有血清素和α-微管蛋白样烧瓶状细胞的后幼虫感觉器官。另外,成对的 5-羟色胺-lir 神经突起源于顶端器官并伸入帆布中。在 veliger 阶段,一个未配对的胃胃 5-羟色胺-lir 细胞发育到胃的腹侧。双壳贝类的顶端器官中的少量血清素-lir 细胞与基部分支的腹足类和舟足类的幼虫共享,因此被认为是 Conchifera 最后一个共同祖先的特征,而幼虫神经结构的整体简单性似乎是双壳纲的一个特定特征。大脑神经节的原原开始在顶端器官的基部形成。从顶端器官,一对脑 - 内脏结缔组织向后突出并连接到含有血清素和α-微管蛋白样烧瓶状细胞的后幼虫感觉器官。另外,成对的 5-羟色胺-lir 神经突起源于顶端器官并伸入帆布中。在 veliger 阶段,一个未配对的胃胃 5-羟色胺-lir 细胞发育到胃的腹侧。双壳贝类的顶端器官中的少量血清素-lir 细胞与基部分支的腹足类和舟足类的幼虫共享,因此被认为是 Conchifera 最后一个共同祖先的特征,而幼虫神经结构的整体简单性似乎是双壳纲的一个特定特征。
更新日期:2018-01-18
down
wechat
bug