当前位置: X-MOL 学术Microb. Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Delignification of Lignocellulosic Biomass by Recombinant Fungus Phanerochaete chrysosporium Overexpressing Laccases and Peroxidases.
Microbial Physiology ( IF 2.9 ) Pub Date : 2018-02-28 , DOI: 10.1159/000485976
Nancy Coconi Linares 1 , Francisco Fernández 2 , Achim M Loske 2 , Miguel A Gómez-Lim 1
Affiliation  

Ligninolytic enzyme production and lignin degradation are typically the rate-limiting steps in the biofuel industry. To improve the efficiency of simultaneous bio-delignification and enzyme production, Phanerochaete chrysosporium was transformed by shock wave-induced acoustic cavitation to co-overexpress 3 peroxidases and 1 laccase and test it on the degradation of sugarcane bagasse and wheat bran. Lignin depolymerization was enhanced by up to 25% in the presence of recombinant fungi in comparison with the wild-type strain. Sugar release on lignocellulose was 2- to 6-fold higher by recombinant fungi as compared with the control. Wheat bran ostensibly stimulated the production of ligninolytic enzymes. The highest peroxidase activity from the recombinant strains was 2.6-fold higher, whereas the increase in laccase activity was 4-fold higher in comparison to the control. The improvement of lignin degradation was directly proportional to the highest peroxidase and laccase activity. Because various phenolic compounds released during lignocellulose degradation have proven to be toxic to cells and to inhibit enzyme activity, a significant reduction (over 40%) of the total phenolic content in the samples treated with recombinant strains was observed. To our knowledge, this is the first report that engineering P. chrysosporium enhances biodegradation of lignocellulosic biomass.

中文翻译:

过表达漆酶和过氧化物酶的重组真菌Phanerochaete chrysosporium增强了木质纤维素生物质的脱木质素。

木质素分解酶的产生和木质素的降解通常是生物燃料工业中的限速步骤。为了提高同时进行的生物脱木质素和酶生产的效率,Phanerochaete chrysosporium通过冲击波诱导的空化作用转化为共过表达3种过氧化物酶和1种漆酶,并测试了其对甘蔗渣和麦麸降解的影响。与野生型菌株相比,在存在重组真菌的情况下,木质素解聚作用提高了25%。与对照相比,重组真菌在木质纤维素上释放的糖高出2至6倍。麦麸表面上刺激了木质素分解酶的产生。重组菌株的最高过氧化物酶活性高2.6倍,而漆酶活性的增加是对照的4倍。木质素降解的改善与最高的过氧化物酶和漆酶活性成正比。由于木质纤维素降解过程中释放的各种酚类化合物已证明对细胞有毒并抑制了酶的活性,因此在用重组菌株处理的样品中,总酚类含量明显减少(超过40%)。据我们所知,这是第一个报道工程化金孢假单胞菌可增强木质纤维素生物质的生物降解的报告。由于木质纤维素降解过程中释放的各种酚类化合物已证明对细胞有毒并抑制了酶的活性,因此在用重组菌株处理的样品中,总酚类含量明显减少(超过40%)。据我们所知,这是第一个报道工程化金孢假单胞菌可增强木质纤维素生物质的生物降解的报告。由于木质纤维素降解过程中释放的各种酚类化合物已证明对细胞有毒并抑制了酶的活性,因此在用重组菌株处理的样品中,总酚类含量明显减少(超过40%)。据我们所知,这是第一个报道工程化金孢假单胞菌可增强木质纤维素生物质的生物降解的报告。
更新日期:2019-11-01
down
wechat
bug