当前位置: X-MOL 学术MRS Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sculpting Light by Arranging Optical Components with DNA Nanostructures.
MRS Bulletin ( IF 4.1 ) Pub Date : 2017-12-08 , DOI: 10.1557/mrs.2017.278
Mauricio Pilo-Pais 1 , Guillermo P Acuna 2 , Philip Tinnefeld 3 , Tim Liedl 1
Affiliation  

DNA nanotechnology has developed into a state where the design and assembly of complex nanoscale structures has become fast, reliable, cost-effective, and accessible to non-experts. Nanometer-precise positioning of organic (dyes, biomolecules, etc.) and inorganic (metal nanoparticles, colloidal quantum dots, etc.) components on DNA nanostructures is straightforward and modular. In this perspective article, we identify the opportunities and challenges that DNA-assembled devices and materials are facing for optical antennas, metamaterials, and sensing applications. With the abilities of arranging hybrid materials in defined geometries, plasmonic effects will, for example, amplify molecular recognition transduction so that single-molecule events will be measureable with simple devices. On the larger scale, DNA nanotechnology has the potential of breaking the symmetry of common self-assembled functional materials creating pre-defined optical properties such as refractive index tuning, Bragg reflection and topological insulation.

中文翻译:


通过排列具有 DNA 纳米结构的光学元件来雕刻光。



DNA 纳米技术已发展到复杂纳米级结构的设计和组装变得快速、可靠、经济高效且非专家也可以使用的状态。 DNA 纳米结构上有机(染料、生物分子等)和无机(金属纳米粒子、胶体量子点等)成分的纳米级精确定位是简单且模块化的。在这篇透视文章中,我们确定了 DNA 组装器件和材料在光学天线、超材料和传感应用中面临的机遇和挑战。例如,凭借以定义的几何形状排列混合材料的能力,等离子体效应将放大分子识别转导,从而可以用简单的设备测量单分子事件。在更大范围内,DNA 纳米技术有可能打破常见自组装功能材料的对称性,从而创造出预定义的光学特性,例如折射率调谐、布拉格反射和拓扑绝缘。
更新日期:2019-11-01
down
wechat
bug