当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
Enhancing Areal Interpolation Frameworks through Dasymetric Refinement to Create Consistent Population Estimates across Censuses.
International Journal of Geographical Information Science ( IF 3.545 ) Pub Date : 2018-01-01 , DOI: 10.1080/13658816.2018.1472267
Hamidreza Zoraghein,Stefan Leyk

To assess micro-scale population dynamics effectively, demographic variables should be available over temporally consistent small area units. However, fine-resolution census boundaries often change between survey years. This research advances areal interpolation methods with dasymetric refinement to create accurate consistent population estimates in 1990 and 2000 (source zones) within tract boundaries of the 2010 census (target zones) for five demographically distinct counties in the U.S. Three levels of dasymetric refinement of source and target zones are evaluated. First, residential parcels are used as a binary ancillary variable prior to regular areal interpolation methods. Second, Expectation Maximization (EM) and its data-extended version leverage housing types of residential parcels as a related ancillary variable. Finally, a third refinement strategy to mitigate the overestimation effect of large residential parcels in rural areas uses road buffers and developed land cover classes. Results suggest the effectiveness of all three levels of dasymetric refinement in reducing estimation errors. They provide a first insight into the potential accuracy improvement achievable in varying geographic and demographic settings but also through the combination of different refinement strategies in parts of a study area. Such improved consistent population estimates are the basis for advanced spatio-temporal demographic research.
更新日期:2019-11-01

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug