当前位置: X-MOL 学术Math. Med. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Limit-cycle oscillatory coexpression of cross-inhibitory transcription factors: a model mechanism for lineage promiscuity.
Mathematical Medicine and Biology ( IF 0.8 ) Pub Date : 2019-03-15 , DOI: 10.1093/imammb/dqy003
Pavol Bokes 1 , John R King 2
Affiliation  

Lineage switches are genetic regulatory motifs that govern and maintain the commitment of a developing cell to a particular cell fate. A canonical example of a lineage switch is the pair of transcription factors PU.1 and GATA-1, of which the former is affiliated with the myeloid and the latter with the erythroid lineage within the haematopoietic system. On a molecular level, PU.1 and GATA-1 positively regulate themselves and antagonize each other via direct protein-protein interactions. Here we use mathematical modelling to identify a novel type of dynamic behaviour that can be supported by such a regulatory architecture. Guided by the specifics of the PU.1-GATA-1 interaction, we formulate, using the law of mass action, a system of differential equations for the key molecular concentrations. After a series of systematic approximations, the system is reduced to a simpler one, which is tractable to phase-plane and linearization methods. The reduced system formally resembles, and generalizes, a well-known model for competitive species from mathematical ecology. However, in addition to the qualitative regimes exhibited by a pair of competitive species (exclusivity, bistable exclusivity, stable-node coexpression) it also allows for oscillatory limit-cycle coexpression. A key outcome of the model is that, in the context of cell-fate choice, such oscillations could be harnessed by a differentiating cell to prime alternately for opposite outcomes; a bifurcation-theory approach is adopted to characterize this possibility.

中文翻译:

交叉抑制转录因子的极限循环振荡共表达:谱系混杂的模型机制。

谱系开关是遗传调控基序,可控制和维持发育中的细胞对特定细胞命运的承诺。谱系转换的一个典型例子是成对的转录因子PU.1和GATA-1,前者与造血系统中的髓系相关,而后者与类红细胞谱系相关。在分子水平上,PU.1和GATA-1正调节自身,并通过直接的蛋白质-蛋白质相互作用相互拮抗。在这里,我们使用数学建模来识别这种监管体系结构可以支持的新型动态行为。在PU.1-GATA-1相互作用的细节指导下,我们使用质量作用定律为关键分子浓度制定了一个微分方程组。经过一系列系统的估算后,该系统被简化为一个更简单的系统,对于相平面和线性化方法而言,它很容易处理。简化后的系统在形式上类似于并归纳了数学生态学中一个著名的竞争物种模型。但是,除了一对竞争性物种(排他性,双稳态排他性,稳定节点共表达)表现出的定性机制外,它还允许振荡极限循环共表达。该模型的一个关键结果是,在细胞命运选择的背景下,分化细胞可以利用这种振荡来交替引发相反的结果。采用分叉理论方法来表征这种可能性。数学生态学中竞争物种的著名模型。但是,除了一对竞争性物种(排他性,双稳态排他性,稳定节点共表达)表现出的定性机制外,它还允许振荡极限循环共表达。该模型的一个关键结果是,在细胞命运选择的背景下,分化细胞可以利用这种振荡来交替引发相反的结果。采用分叉理论方法来表征这种可能性。数学生态学中竞争物种的著名模型。但是,除了一对竞争性物种(排他性,双稳态排他性,稳定节点共表达)表现出的定性机制外,它还允许振荡极限循环共表达。该模型的一个关键结果是,在细胞命运选择的背景下,分化细胞可以利用这种振荡来交替引发相反的结果。采用分叉理论方法来表征这种可能性。在细胞命运选择的背景下,分化细胞可以利用这种振荡来交替引发相反的结果。采用分叉理论方法来表征这种可能性。在细胞命运选择的背景下,分化细胞可以利用这种振荡来交替引发相反的结果。采用分叉理论方法来表征这种可能性。
更新日期:2019-11-01
down
wechat
bug