当前位置: X-MOL 学术Struct. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inception of electronic damage of matter by photon-driven post-ionization mechanisms.
Structural Dynamics ( IF 3.670 ) Pub Date : 2019-05-02 , DOI: 10.1063/1.5090332
W Błachucki 1 , Y Kayser 2 , J Czapla-Masztafiak 3 , M Guo 4 , P Juranić 5 , M Kavčič 6 , E Källman 4 , G Knopp 5 , M Lundberg 4 , C Milne 5 , J Rehanek 5 , J Sá , J Szlachetko 3
Affiliation  

"Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.

中文翻译:

通过光子驱动的后电离机制开始对物质进行电子破坏。

“销毁前探测”方法允许使用超亮但具有破坏性的X射线自由电子激光(XFEL)脉冲对完整样品进行衍射和成像测量。该方法利用XFEL脉冲的超短持续时间来超越X射线的破坏性。原子运动通常大于50 fs,可调节完整样品测量的最大脉冲持续时间。在这项贡献中,我们报告了在保留原子位置的情况下具有超短X射线脉冲的分子的电子结构破坏。对X射线诱导过程的详细研究表明,溶剂在X射线吸收过程中,在十亿分之一秒和飞秒的时间范围内会产生大量溶剂化电子,这些溶剂化电子能够与所探测的分子发生库仑相互作用。提出的发现表明,对探测光谱的强烈影响来自被探测原子周围环境的电离,从而导致电子结构的修饰比光子的直接吸收快得多。这项工作要求在集中于例如溶液或基质中嵌入的样品的情况下考虑这种现象,而这实际上涉及大多数实验研究。导致电子结构改变的环境比直接吸收光子要快得多。这项工作要求在集中于例如溶液或基质中嵌入的样品的情况下考虑这种现象,而这实际上涉及大多数实验研究。导致电子结构改变的环境比直接吸收光子要快得多。这项工作要求在集中于例如溶液或基质中嵌入的样品的情况下考虑这种现象,而这实际上涉及大多数实验研究。
更新日期:2019-11-01
down
wechat
bug