当前位置: X-MOL 学术Neuroinformatics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical Structured Sparse Learning for Schizophrenia Identification.
Neuroinformatics ( IF 3 ) Pub Date : 2019-04-23 , DOI: 10.1007/s12021-019-09423-0
Mingliang Wang 1, 2 , Xiaoke Hao 1 , Jiashuang Huang 1 , Kangcheng Wang 3 , Li Shen 4 , Xijia Xu 5 , Daoqiang Zhang 1 , Mingxia Liu 6
Affiliation  

Fractional amplitude of low-frequency fluctuation (fALFF) has been widely used for resting-state functional magnetic resonance imaging (rs-fMRI) based schizophrenia (SZ) diagnosis. However, previous studies usually measure the fALFF within low-frequency fluctuation (from 0.01 to 0.08Hz), which cannot fully cover the complex neural activity pattern in the resting-state brain. In addition, existing studies usually ignore the fact that each specific frequency band can delineate the unique spontaneous fluctuations of neural activities in the brain. Accordingly, in this paper, we propose a novel hierarchical structured sparse learning method to sufficiently utilize the specificity and complementary structure information across four different frequency bands (from 0.01Hz to 0.25Hz) for SZ diagnosis. The proposed method can help preserve the partial group structures among multiple frequency bands and the specific characters in each frequency band. We further develop an efficient optimization algorithm to solve the proposed objective function. We validate the efficacy of our proposed method on a real SZ dataset. Also, to demonstrate the generality of the method, we apply our proposed method on a subset of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results on both datasets demonstrate that our proposed method achieves promising performance in brain disease classification, compared with several state-of-the-art methods.

中文翻译:

用于精神分裂症鉴定的分层结构稀疏学习。

低频波动的小幅度振幅(fALFF)已广泛用于基于静止状态功能磁共振成像(rs-fMRI)的精神分裂症(SZ)诊断。但是,以前的研究通常在低频波动(从0.01到0.08Hz)内测量fALFF,这不能完全覆盖静止状态大脑中复杂的神经活动模式。此外,现有研究通常忽略每个特定的频带都可以描绘出大脑中神经活动的独特自发性波动这一事实。因此,在本文中,我们提出了一种新颖的分层结构的稀疏学习方法,以充分利用跨越四个不同频段(从0.01Hz到0.25Hz)的特异性和互补结构信息进行SZ诊断。所提出的方法可以帮助保留多个频带中的部分组结构以及每个频带中的特定字符。我们进一步开发了一种有效的优化算法来解决所提出的目标函数。我们在真实的SZ数据集上验证了我们提出的方法的有效性。同样,为了证明该方法的通用性,我们将拟议的方法应用于阿尔茨海默氏病神经影像学倡议(ADNI)数据库的子集。在这两个数据集上的实验结果表明,与几种最先进的方法相比,我们提出的方法在脑疾病分类中取得了令人鼓舞的性能。我们在真实的SZ数据集上验证了我们提出的方法的有效性。同样,为了证明该方法的通用性,我们将拟议的方法应用于阿尔茨海默氏病神经影像学倡议(ADNI)数据库的子集。在这两个数据集上的实验结果表明,与几种最先进的方法相比,我们提出的方法在脑疾病分类中取得了令人鼓舞的性能。我们在真实的SZ数据集上验证了我们提出的方法的有效性。同样,为了证明该方法的通用性,我们将拟议的方法应用于阿尔茨海默氏病神经影像学倡议(ADNI)数据库的子集。在这两个数据集上的实验结果表明,与几种最先进的方法相比,我们提出的方法在脑疾病分类中取得了令人鼓舞的性能。
更新日期:2019-04-23
down
wechat
bug