当前位置: X-MOL 学术BMC Dev. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms.
BMC Developmental Biology Pub Date : 2019-03-07 , DOI: 10.1186/s12861-019-0183-y
Livia Goto-Silva 1 , Nadia M E Ayad 1 , Iasmin L Herzog 2 , Nilton P Silva 2 , Bernard Lamien 2 , Helcio R B Orlande 2 , Annie da Costa Souza 3 , Sidarta Ribeiro 3 , Michele Martins 4 , Gilberto B Domont 4 , Magno Junqueira 4 , Fernanda Tovar-Moll 1, 5 , Stevens K Rehen 1, 5
Affiliation  

BACKGROUND Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.

中文翻译:

物理力的计算流体动力学分析在两个不同的多重平台中的大脑类器官培养中发挥作用。

背景技术悬浮培养中的类器官培养需要在低剪切应力下搅拌以允许营养物扩散,这保留了组织结构。已经提出了用于类器官培养的多重系统,但是尚未确定它们是否满足与常规使用的旋转烧瓶相似的剪切应力参数,以及与成功生成脑类器官的相关性。结果在这里,我们使用计算流体动力学(CFD)来模拟两种多重培养条件:在轨道振动器上的操纵盘和使用先前描述的生物反应器。该生物反应器具有低速和高剪切应力区域,这些区域可能会影响细胞聚集体的生长,具体取决于体积,而操纵板的计算变量更接近于旋转烧瓶的计算变量。结论我们的方案改善了标准脑类器官形成的初始步骤,并且产生的类器官显示出区域化的大脑结构,包括视网膜色素细胞。总的来说,我们得出的结论是,在轨道方向盘上进行悬浮培养是一种成本有效的实用替代方案,可以替代先前描述的用于培养脑类器官的研究平台和多重测试平台。
更新日期:2020-04-22
down
wechat
bug