当前位置: X-MOL 学术J. Biomed. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomimetic Poly(Poly(ε-caprolactone)-Polytetrahydrofuran urethane) Based Nanofibers Enhanced Chondrogenic Differentiation and Cartilage Regeneration.
Journal of Biomedical Nanotechnology Pub Date : 2019-3-21 , DOI: 10.1166/jbn.2019.2748
Tongmeng Jiang , Shujun Heng , Xianyuan Huang , Li Zheng , Dan Kai , Xian Jun Loh , Jinmin Zhao

Scaffolds for stem cell-based therapy of cartilage defect require bioactivity and stiffness mimicking to the native cartilage matrix. In this study, we fabricated electrospun nanofibers composited of cartilage matrix components (collagen or chondroitin sulfate) and poly(ε-caprolactone)-polytetrahydrofuran (PCL-PTHF). PCL-PTHF with rat tail derived collagen was named PR and PCL-PTHF with chondroitin sulfate (PS) termed PS, which have a modulus of 7.5 MPa and 3.6 MPa, respectively, within the range of cartilage matrix. Their chondrogenic potential for guiding chondrogenic differentiation and promoting cartilage regeneration were investigated based upon mesenchymal stem cells (MSCs). Results showed that both PR and PS nanofibers have the ability to induce chondrogenesis of MSCs and accelerate the regeneration of injured cartilage surface, probably via the suppression of Tumor necrosis factor (TNF) signaling pathway as evidenced by microarray profiles. Comparatively, PR showed better chondrogenic potential both in vitro and in vivo than that of PS, which may induce chondrogenesis through Hypoxia inducing factor-1 (HIF-1) signaling pathway. This study may provide reference for MSC based therapy of cartilage defects.

中文翻译:

仿生的聚(ε-己内酯)-聚四氢呋喃氨基甲酸乙酯基纳米纤维增强了软骨分化和软骨再生。

用于基于干细胞的软骨缺损治疗的支架需要模仿天然软骨基质的生物活性和硬度。在这项研究中,我们制造了由软骨基质成分(胶原或硫酸软骨素)和聚(ε-己内酯)-聚四氢呋喃(PCL-PTHF)复合而成的电纺纳米纤维。具有大鼠尾部衍生胶原的PCL-PTHF被称为PR,具有硫酸软骨素(PS)的PCL-PTHF被称为PS,其在软骨基质范围内的模量分别为7.5 MPa和3.6 MPa。基于间充质干细胞(MSCs)研究了它们的软骨形成潜力,以指导软骨分化和促进软骨再生。结果表明PR和PS纳米纤维均具有诱导MSC软骨形成并促进受损软骨表面再生的能力,可能是通过抑制肿瘤坏死因子(TNF)信号通路来实现的,这一点已通过微阵列图证明。相比之下,PR均显示出更好的软骨生成潜能在体外体内都比PS少,这可能是通过缺氧诱导因子1(HIF-1)信号通路诱导软骨形成的。该研究可为基于MSC的软骨缺损治疗提供参考。
更新日期:2020-08-21
down
wechat
bug