当前位置: X-MOL 学术Transp Porous Media › 论文详情
A Surrogate Modelling Approach Based on Nonlinear Dimension Reduction for Uncertainty Quantification in Groundwater Flow Models.
Transport in Porous Media ( IF 1.997 ) Pub Date : 2019-03-16 , DOI: 10.1007/s11242-018-1065-7
C Gadd,W Xing,M Mousavi Nezhad,A A Shah

In this paper, we develop a surrogate modelling approach for capturing the output field (e.g. the pressure head) from groundwater flow models involving a stochastic input field (e.g. the hydraulic conductivity). We use a Karhunen-Loève expansion for a log-normally distributed input field and apply manifold learning (local tangent space alignment) to perform Gaussian process Bayesian inference using Hamiltonian Monte Carlo in an abstract feature space, yielding outputs for arbitrary unseen inputs. We also develop a framework for forward uncertainty quantification in such problems, including analytical approximations of the mean of the marginalized distribution (with respect to the inputs). To sample from the distribution, we present Monte Carlo approach. Two examples are presented to demonstrate the accuracy of our approach: a Darcy flow model with contaminant transport in 2-d and a Richards equation model in 3-d.
更新日期:2019-11-01

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug