当前位置: X-MOL 学术Int. J. Robot. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots
The International Journal of Robotics Research ( IF 7.5 ) Pub Date : 2013-02-01 , DOI: 10.1177/0278364912467486
Bruce R Donald 1 , Christopher G Levey , Igor Paprotny , Daniela Rus
Affiliation  

We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (closed-loop orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240-280 μm × 60 μm × 7-20 μm in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures.

中文翻译:

由应力工程 MEMS 微型机器人组成的结构微组装的规划和控制

我们提出了使用通过单个全局控制信号控制的应力工程 MEMS 微型机器人 (MicroStressBots) 组来实现平面微组装的控制策略。全局控制信号耦合设备的运动,导致系统高度欠驱动。为了使机器人在高度欠驱动的情况下组装成任意平面形状,希望每个机器人都可以独立操纵(独立可控)。为了实现独立控制,我们制造了响应相同全局控制信号而表现(移动)不同的机器人。我们利用这种差异来开发装配控制策略,其中装配目标是通过连接各个机器人的底盘可以获得所需的几何形状。我们导出并通过实验测试了装配计划,这些计划命令一些机器人朝着目标前进,而其他机器人则被限制在小圆形轨迹(闭环轨道)中,直到轮到它们进入目标形状。我们的控制策略在制造的 MicroStressBots 系统上进行了测试。机器人的尺寸为 240-280 μm × 60 μm × 7-20 μm,可在单个操作环境中同时移动。我们通过准确组装五种不同类型的平面微结构来证明我们控制方案的可行性。我们的控制策略在制造的 MicroStressBots 系统上进行了测试。机器人的尺寸为 240-280 μm × 60 μm × 7-20 μm,可在单个操作环境中同时移动。我们通过准确组装五种不同类型的平面微结构来证明我们控制方案的可行性。我们的控制策略在制造的 MicroStressBots 系统上进行了测试。机器人的尺寸为 240-280 μm × 60 μm × 7-20 μm,可在单个操作环境中同时移动。我们通过准确组装五种不同类型的平面微结构来证明我们控制方案的可行性。
更新日期:2013-02-01
down
wechat
bug