当前位置: X-MOL 学术Nano. Commun. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance.
Nano Communication Networks ( IF 2.9 ) Pub Date : 2011-03-10 , DOI: 10.1016/j.nancom.2011.03.001
David K Karig 1 , Piro Siuti , Roy D Dar , Scott T Retterer , Mitchel J Doktycz , Michael L Simpson
Affiliation  

Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal.



中文翻译:

由随机共振驱动的纳米制造细胞模拟中的生物通讯模型。

细胞提供了高效的纳米机器网络的自然例子。因此,自然界中的细胞内和细胞间通讯机制都被视为工程纳米通讯的灵感和指导来源。以这种方式利用生物功能需要一种整合系统生物学、合成生物学和纳米制造的跨学科方法。在这里,我们提出了一个模型系统,它举例说明了这些研究领域之间的协同作用。我们提出了一种合成基因网络,用于在纳米制造的细胞模拟阵列中运行,该阵列使用随机共振现象长距离传播生物分子信号。我们的系统由细菌群体感应信号分子、由该信号触发的双稳态基因开关组成,以及一系列包含遗传系统的纳米制造细胞模拟孔。系统中的最佳噪声水平有助于通过模拟阵列长距离传播随时间变化的 AHL 信号。该噪声水平由系统体积和遗传网络的参数决定。我们提出的基因驱动的随机共振系统作为一个测试平台,用于探索基因表达噪声的潜在利用,以帮助传输随时间变化的分子信号。

更新日期:2011-03-10
down
wechat
bug