当前位置: X-MOL 学术Comput. Math. Method Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.
Computational and Mathematical Methods in Medicine ( IF 2.809 ) Pub Date : 2010 , DOI: 10.1080/1748670x.2010.491828
Edgar Olbrant 1 , Martin Frank
Affiliation  

In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker–Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236–250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

中文翻译:

在生物组织中电子和光子传输的广义Fokker-Planck理论:在放射治疗中的应用。

在本文中,我们研究了一种在生物组织中进行颗粒运输的确定性方法。该方法专为癌症治疗中的剂量计算和放射成像而开发。广义福克-普朗克(GFP)理论[Leakeas and Larsen,Nucl。科学 。137(2001),pp。236–250]的开发是为了改进福克-普朗克(FP)方程,在散射是前向峰且有足够大角度散射的情况下。我们将基于网格的数值解与FP和GFP在实际医学应用中进行比较。首先,进行人体异质部位的电子剂量计算。因此,包括了准确的电子散射截面,并广泛地描述了将其纳入我们的模型的过程。第二,我们解决了辐射传输方程的GFP近似问题,以研究生物组织中光的反射率和透射率。将所有结果与蒙特卡洛或离散坐标传输解决方案进行比较。
更新日期:2020-09-25
down
wechat
bug