当前位置: X-MOL 学术Physiol. Entomol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seasonal population dynamics and behaviour of insects in models of vector-borne pathogens
Physiological Entomology ( IF 1.5 ) Pub Date : 2004-08-01 , DOI: 10.1111/j.0307-6962.2004.00411.x
Cynthia C Lord 1
Affiliation  

It is clear that the seasonal population dynamics and behaviour of insects and other vectors should be considered in models of vector-borne pathogens. Further data are required to model these adequately, particularly for the behavioural ecology of vectors. These models would then be more valuable for exploring the transmission cycles and development of control strategies. However, it is important to recognize that it is impossible to do everything at once, and all components of vector and host biology cannot and should not be included in every model. Models with many parameters, all of which have high variability, are difficult to analyse. However, it is important to be explicit in model assumptions and, when excluding vector seasonality or behaviour from the model, ensure that it is intentional and not simply by omission. There is a long-standing tradition of incorporating aspects of models from other disciplines into models of vector-borne pathogens, and this is useful when including behaviour, seasonality and other complex interactions in these models. Spatial structure, dispersal and foraging behaviour have been studied extensively in parasitoids (e.g. Wilson & Hassell, 1997; Hassell, 2000; Olson et al., 2000). Demographic stochasticity, variable time periods, seasonal structures and individual behaviour have been considered in the epidemiology of directly transmitted pathogens (e.g. Earn et al., 1998; Keeling & Grenfell, 1998, 2000; Grenfell et al., 2001; Lloyd, 2001). Models of ecological systems increasingly incorporate stochastic effects, spatial structure, community structure and dispersal (e.g. Sklar & Costanza, 1990; Ives et al., 1999; South, 1999; Bjornstad & Grenfell, 2001; King & Schaffer, 2001; Wiegand et al., 2001; Keeling et al., 2002). There are exciting opportunities for considering these ecological factors in vector-borne diseases and exploring the impact on pathogen transmission. The research discussed here provides examples of how some of these aspects can be incorporated into models of vector-borne pathogens. Considering complex structures and models in other disciplines and incorporating relevant aspects into models of vector-borne pathogens will improve the understanding of transmission.

中文翻译:

媒介传播病原体模型中昆虫的季节性种群动态和行为

很明显,在媒介传播的病原体模型中应该考虑昆虫和其他媒介的季节性种群动态和行为。需要更多数据来对这些进行充分建模,特别是对于载体的行为生态学。这些模型对于探索传输周期和控制策略的开发将更有价值。然而,重要的是要认识到不可能一次完成所有事情,并且载体和宿主生物学的所有组成部分不能也不应该包含在每个模型中。具有许多参数的模型,所有这些都具有很高的可变性,很难分析。然而,在模型假设中明确是很重要的,当从模型中排除向量季节性或行为时,确保它是有意的,而不是简单的遗漏。将来自其他学科的模型的各个方面整合到媒介传播病原体模型中有着悠久的传统,这在将行为、季节性和其他复杂相互作用包含在这些模型中时很有用。空间结构、散布和觅食行为在寄生蜂中得到了广泛的研究(例如,Wilson & Hassell,1997;Hassell,2000;Olson 等,2000)。直接传播病原体的流行病学已经考虑了人口统计学随机性、可变时间段、季节性结构和个体行为(例如 Earn 等人,1998 年;Keeling & Grenfell,1998 年,2000 年;Grenfell 等人,2001 年;Lloyd,2001 年) . 生态系统模型越来越多地包含随机效应、空间结构、群落结构和扩散(例如 Sklar & Costanza,1990;Ives 等,1999;South, 1999年;比约恩斯塔德和格伦费尔,2001 年;金沙弗,2001;韦根等人,2001 年;基林等人,2002 年)。在媒介传播疾病中考虑这些生态因素并探索对病原体传播的影响有令人兴奋的机会。此处讨论的研究提供了一些示例,说明如何将其中一些方面纳入媒介传播的病原体模型。考虑其他学科的复杂结构和模型,并将相关方面纳入媒介传播病原体模型,将提高对传播的理解。此处讨论的研究提供了一些示例,说明如何将其中一些方面纳入媒介传播的病原体模型。考虑其他学科的复杂结构和模型,并将相关方面纳入媒介传播病原体模型,将提高对传播的理解。此处讨论的研究提供了一些示例,说明如何将其中一些方面纳入媒介传播的病原体模型。考虑其他学科的复杂结构和模型,并将相关方面纳入媒介传播病原体模型,将提高对传播的理解。
更新日期:2004-08-01
down
wechat
bug