当前位置: X-MOL 学术Channels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double gaps along Shaker S4 demonstrate omega currents at three different closed states.
Channels ( IF 3.3 ) Pub Date : 2009-12-17
Tamer M Gamal El-Din 1 , Hansjakob Heldstab , Claudia Lehmann , Nikolaus G Greeff
Affiliation  

The aim of the present study was to investigate in detail how the voltage sensor in the Shaker potassium channel moves during the gating process. After the publication of the open channel structure from the crystallized K(V)AP channel in 2003, an alternative so-called "paddle" model was put forward in contrast to the existing helical screw model. The voltage sensor S4 contains 4 arginine residues relevant for gating, R1(362), R2(365), R3(368) and R4(371), each separated by 2 neutral residues. These charged residues coil as one of three threads on the S4-alpha-helix. Based on a previous finding that the mutation R1S leads to the so-called omega leak current through a "gating-pore" in the closed state, we introduced gaps systematically along the arginine thread substituting long arginines by short serines. Mutations R2S or R3S did neither create transient nor steady leaks. The fact that the native residue A359, which is located three amino acids in front of R1, is a short one, motivated us to check its role. Mutation of A359 to arginine blocked the omega current in the R1S mutant indicating that the omega pore is occupied by A359 and R1. Introducing further double gaps (RR to SS) at sequential positions (0 + 1, 1 + 2, 2 + 3), produced clear leak currents which were remarkably stable over a wide voltage range. These leaks contradict that S4 would swing together with S3 in lipid according to the paddle hypothesis. Rather, our results show that during gating the S4 segment moves in 3 helical steps through a fixed pore formed by the channel protein.

中文翻译:

振动筛S4上的双间隙表明在三个不同的闭合状态下的欧米茄电流。

本研究的目的是详细研究摇床钾通道中的电压传感器在门控过程中如何移动。在2003年从结晶的K(V)AP通道公开通道结构后,与现有的螺旋螺杆模型形成对比,提出了另一种所谓的“桨式”模型。电压传感器S4包含4个与选通相关的精氨酸残基R1(362),R2(365),R3(368)和R4(371),每个残基由2个中性残基分隔开。这些带电荷的残基盘绕为S4-α-螺旋上的三个螺纹之一。基于先前的发现,突变R1S通过闭合状态下的“门控孔”导致所谓的Ω泄漏电流,我们沿着精氨酸线系统地引入了间隙,用短丝氨酸取代了长的精氨酸。变异R2S或R3S既不会产生瞬态泄漏也不会产生稳态泄漏。位于R1前面三个氨基酸的天然残基A359是一个简短的事实,促使我们检查其作用。将A359突变为精氨酸可阻断R1S突变体中的ω电流,表明ω孔被A359和R1占据。在顺序位置(0 + 1,1 + 2,2 + 3)处引入更多的双间隙(RR至SS),产生了清晰的泄漏电流,该泄漏电流在很宽的电压范围内都非常稳定。这些泄漏与S4会根据桨叶假设在脂质中与S3一起摆动相矛盾。相反,我们的结果表明,在门控过程中,S4区段以3个螺旋形步长移动通过通道蛋白形成的固定孔。它位于R1前面的三个氨基酸上,是一个简短的字母,促使我们检查其作用。将A359突变为精氨酸可阻断R1S突变体中的ω电流,表明ω孔被A359和R1占据。在顺序位置(0 + 1,1 + 2,2 + 3)处引入更多的双间隙(RR至SS),产生了清晰的泄漏电流,该泄漏电流在很宽的电压范围内都非常稳定。这些泄漏与S4会根据桨叶假设在脂质中与S3一起摆动相矛盾。相反,我们的结果表明,在门控过程中,S4区段以3个螺旋形步长移动通过通道蛋白形成的固定孔。它位于R1前面的三个氨基酸上,是一个简短的字母,促使我们检查其作用。将A359突变为精氨酸可阻断R1S突变体中的ω电流,表明ω孔被A359和R1占据。在顺序位置(0 + 1,1 + 2,2 + 3)处引入更多的双间隙(RR至SS),产生了清晰的泄漏电流,该泄漏电流在很宽的电压范围内都非常稳定。这些泄漏与S4会根据桨叶假设在脂质中与S3一起摆动相矛盾。相反,我们的结果表明,在门控过程中,S4区段以3个螺旋形步长移动通过通道蛋白形成的固定孔。在顺序位置(0 + 1,1 + 2,2 + 3)处引入更多的双间隙(RR至SS),产生了清晰的泄漏电流,该泄漏电流在很宽的电压范围内都非常稳定。这些泄漏与S4会根据桨叶假设在脂质中与S3一起摆动相矛盾。相反,我们的结果表明,在门控过程中,S4区段以3个螺旋形步长移动通过通道蛋白形成的固定孔。在顺序位置(0 + 1,1 + 2,2 + 3)处引入更多的双间隙(RR至SS),产生了清晰的泄漏电流,该泄漏电流在很宽的电压范围内都非常稳定。这些泄漏与S4会根据桨叶假设在脂质中与S3一起摆动相矛盾。相反,我们的结果表明,在门控过程中,S4区段以3个螺旋形步长移动通过通道蛋白形成的固定孔。
更新日期:2019-11-01
down
wechat
bug