当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial thiosulphate reaction arrays: the interactive roles of Fe(III), O2 and microbial strain on disproportionation and oxidation pathways.
Geobiology ( IF 2.7 ) Pub Date : 2008-12-17 , DOI: 10.1111/j.1472-4669.2008.00173.x
L A Warren 1 , K L I Norlund , L Bernier
Affiliation  

In this work, we experimentally evaluate pH and SO4(2-) dynamics associated with abiotic and microbial S2O3(2-) oxidation under varying [O2], [Fe(III)] and microbial strain/consortia (two pure strains, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, their consortia, and two enrichments from an acidic environmental system, Moose Lake 2002 and Moose Lake 2003). Results of the batch experiments demonstrate highly active microbial processing of S2O3(2-) while abiotic controls under identical experimental conditions remain static with no pH decrease. When abiotic controls were manually titrated with acid to achieve similar pH decreases to those occurring in the microbial treatments, different S pathways were involved. In particular, disproportionation is a substantial component of initial microbial S2O3(2-) processing, and is accelerated by the presence of Fe(III), indicating that recycling of S through intermediate oxidation states is likely to be widespread in acidic mine environments where high [Fe(III)] is common. Furthermore, the microbially mediated S reaction pathways were dependent on both environmental conditions and microbial strain/consortia, indicating that microbial community structure also plays a key role. Collectively, these results highlight the importance of microbial activity, their poor representation by abiotic S models, the likelihood that Fe(III), rather than O2, is a key control on microbial S processing in acid environments and the need to identify the microbial community/strain involved.

中文翻译:

微生物硫代硫酸盐反应阵列:Fe(III),O2和微生物菌株在歧化和氧化途径中的相互作用。

在这项工作中,我们实验性地评估了在[O2],[Fe(III)]和微生物菌株/菌群(两种纯菌株,酸性氧化硫铁氧体)下,与非生物和微生物S2O3(2-)氧化有关的pH和SO4(2-)动态。 ,硫代酸性硫杆菌,它们的财团,以及来自酸性环境系统的两个浓缩物(Moose Lake 2002和Moose Lake 2003)。批处理实验的结果表明,S2O3(2-)的微生物活性很高,而在相同的实验条件下,非生物对照物保持静态,pH值没有降低。当用酸手动滴定非生物对照以实现与微生物处理中相似的pH降低时,涉及不同的S途径。特别地,歧化作用是初始微生物S2O3(2-)处理的重要组成部分,并通过Fe(III)的存在而加速,这表明在中等[Fe(III)]含量高的酸性矿山环境中,S通过中间氧化态的再循环很可能会普遍。此外,微生物介导的S反应途径取决于环境条件和微生物菌株/聚生体,这表明微生物群落结构也起关键作用。总的来说,这些结果突出了微生物活性的重要性,它们在非生物S模型中的代表性差,Fe(III)而不是O2在酸性环境中是控制微生物S加工的关键控制因素以及确定微生物群落的必要性/应变。这表明在中等[Fe(III)]含量较高的酸性矿山环境中,S通过中间氧化态的再循环很可能会很普遍。此外,微生物介导的S反应途径取决于环境条件和微生物菌株/聚生体,这表明微生物群落结构也起关键作用。总的来说,这些结果突出了微生物活性的重要性,它们在非生物S模型中的代表性差,Fe(III)而不是O2在酸性环境中是控制微生物S加工的关键控制因素以及确定微生物群落的必要性/应变。这表明在中等[Fe(III)]含量较高的酸性矿山环境中,S通过中间氧化态的再循环很可能会很普遍。此外,微生物介导的S反应途径取决于环境条件和微生物菌株/聚生体,这表明微生物群落结构也起关键作用。总的来说,这些结果突出了微生物活性的重要性,它们在非生物S模型中的代表性差,Fe(III)而不是O2在酸性环境中是控制微生物S加工的关键控制因素以及确定微生物群落的必要性/应变。表明微生物群落结构也起着关键作用。总的来说,这些结果突出了微生物活性的重要性,它们在非生物S模型中的代表性差,Fe(III)而不是O2在酸性环境中是控制微生物S加工的关键控制因素以及确定微生物群落的必要性/应变。表明微生物群落结构也起着关键作用。总的来说,这些结果突出了微生物活性的重要性,它们在非生物S模型中的代表性差,Fe(III)而不是O2在酸性环境中是控制微生物S加工的关键控制因素以及确定微生物群落的必要性/应变。
更新日期:2019-11-01
down
wechat
bug