当前位置: X-MOL 学术Prog. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cracking taste codes by tapping into sensory neuron impulse traffic.
Progress in Neurobiology ( IF 6.7 ) Pub Date : 2008-10-01 , DOI: 10.1016/j.pneurobio.2008.09.003
Marion E Frank 1 , Robert F Lundy , Robert J Contreras
Affiliation  

Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from "taste" nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na(+)-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well characterized. Specialists are associated with species' nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor T1R, and N specialists, associated with the epithelial sodium channel ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific than T1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately "crack taste codes."

中文翻译:

通过利用感觉神经元冲动交通来破解味觉代码。

哺乳动物口味质量编码的生物学基础的见解始于“味觉”神经的电生理记录,如今,这种技术继续产生重要信息。专门参与味觉质量辨别的鼓参神经元是专家或通才。专家对以单一口味质量为特征的刺激做出反应,这是由条件口味测试中的行为交叉概括定义的。通才对引起多种厌恶性质的电解质作出反应。啮齿动物的Na(+)-盐(N)专家和哺乳动物的多个订单中的甜味刺激(S)专家都得到了很好的表征。专家与物种有关 营养需求及其激活被内部生理条件和受污染的外部热量来源延展。与异二聚体G蛋白偶联受体T1R相关的S专家和与上皮钠通道ENaC相关的N专家与从味蕾到传入神经元的标记线编码一致。然而,S-专家神经元和行为在包含谷氨酸方面的特异性不如T1R2-3,而E-通才神经元在包含盐和苦味刺激方面的候选者,PDK TRP通道,酸受体的特异性则低得多。营养素的专用标签线和厌恶性电解质的通用图案可能正在将味觉信息并排传输到大脑。然而,通俗易懂的品味质量编码中的特定角色可以通过选择自然情况下发现的刺激和刺激水平来解决。T2R通过舌咽部神经参与反射,随着它们进化为处理特定环境壁ches中的危险物质,它们在哺乳动物的系统发育中变得高度多样化。建立嵌入复杂动态混合物中的自然味觉刺激信息传入神经元的大脑交通,最终将“破解味觉代码”。
更新日期:2019-11-01
down
wechat
bug