当前位置: X-MOL 学术Soft Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LONG-TERM MONITORING OF THE PHYSICOCHEMICAL PROPERTIES OF SILICA-BASED NANOPARTICLES ON THE RATE OF ENDOCYTOSIS AND EXOCYTOSIS AND CONSEQUENCES OF CELL DIVISION.
Soft Materials ( IF 1.6 ) Pub Date : 2013-01-04 , DOI: 10.1080/1539445x.2012.617641
Shin-Woo Ha 1 , Corinne E Camalier , M Neale Weitzmann , George R Beck , Jin-Kyu Lee
Affiliation  

Nanomaterials are diverse in size, shape, and charge and these differences likely alter their physicochemical properties in biological systems. We have investigated how these properties alter the initial and long-term dynamics of endocytosis, cell viability, cell division, exocytosis, and interaction with a collagen extracellular matrix using silica-based fluorescent nanoparticles and the murine pre-osteoblast cell line, MC3T3-E1. Three surface modified nanoparticles were analyzed: positively charged (PTMA), negatively charged (OH), and neutrally charged polyethylene glycol (PEG). Positively charged PTMA-modified nanoparticles demonstrated the most rapid uptake, within 2 hours, while PEG modified and negatively charged OH nanoparticles demonstrated slower uptake. Cell viability was >80% irrespective of nanoparticle surface charge suggesting a general lack of toxicity. Long-term monitoring of fluorescent intensity revealed that nanoparticles were passed to daughter cells during mitotic cell division with a corresponding decrease in fluorescent intensity. These data suggest that irrespective of surface charge silica nanoparticles have the potential to internalize into pre-osteoblasts, albeit with different kinetics. Furthermore, long lived nanoparticles have the potential to be transferred to daughter cells during mitosis and can be maintained for weeks intracellularly or within a collagen matrix without toxicity and limited exocytosis.



中文翻译:

长期监测基于二氧化硅的纳米颗粒的物理化学性质对胞吞和胞吐速率以及细胞分裂的影响。

纳米材料的大小、形状和电荷各不相同,这些差异可能会改变它们在生物系统中的物理化学特性。我们已经使用基于二氧化硅的荧光纳米粒子和鼠前成骨细胞系 MC3T3-E1 研究了这些特性如何改变内吞作用的初始和长期动态、细胞活力、细胞分裂、胞吐作用以及与胶原细胞外基质的相互作用. 分析了三种表面改性纳米粒子:带正电荷 (PTMA)、带负电荷 (OH) 和带中性电荷的聚乙二醇 (PEG)。带正电的 PTMA 修饰的纳米颗粒表现出最快的吸收,在 2 小时内,而 PEG 修饰的和带负电的 OH 纳米颗粒表现出较慢的吸收。细胞活力是 > 80% 与纳米颗粒表面电荷无关,表明普遍缺乏毒性。荧光强度的长期监测表明,纳米粒子在有丝分裂细胞分裂过程中传递给子细胞,荧光强度相应降低。这些数据表明,无论表面电荷如何,二氧化硅纳米粒子都有可能内化为前成骨细胞,尽管动力学不同。此外,长寿命纳米粒子有可能在有丝分裂期间转移到子细胞中,并且可以在细胞内或胶原基质内维持数周,而没有毒性和有限的胞吐作用。荧光强度的长期监测表明,纳米粒子在有丝分裂细胞分裂过程中传递给子细胞,荧光强度相应降低。这些数据表明,无论表面电荷如何,二氧化硅纳米粒子都有可能内化为前成骨细胞,尽管动力学不同。此外,长寿命纳米粒子有可能在有丝分裂期间转移到子细胞中,并且可以在细胞内或胶原基质内维持数周,而没有毒性和有限的胞吐作用。荧光强度的长期监测表明,纳米颗粒在有丝分裂细胞分裂期间传递给子细胞,荧光强度相应降低。这些数据表明,无论表面电荷如何,二氧化硅纳米粒子都有可能内化为前成骨细胞,尽管动力学不同。此外,长寿命纳米粒子有可能在有丝分裂期间转移到子细胞中,并且可以在细胞内或胶原基质内维持数周,而没有毒性和有限的胞吐作用。

更新日期:2013-01-04
down
wechat
bug