当前位置: X-MOL 学术Multibody Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Real-time EMG-driven Musculoskeletal Model of the Ankle.
Multibody System Dynamics ( IF 3.4 ) Pub Date : 2011-11-23 , DOI: 10.1007/s11044-011-9285-4
Kurt Manal 1 , Karin Gravare-Silbernagel , Thomas S Buchanan
Affiliation  

The real-time estimation of muscle forces could be a very valuable tool for rehabilitation. By seeing how much muscle force is being produced during rehabilitation, therapists know whether they are working within safe limits in their therapies and patients know if they are producing enough force to expect improvement. This is especially true for rehabilitation of Achilles tendon ruptures where, out of fear of overloading and causing a rerupture, minimal therapy is typically done for eight weeks post-surgery despite animal studies that show that low-level loading is beneficial. To address this need, we have developed a biomechanical model that allows for the real-time estimation of forces in the triceps surae muscle and Achilles tendon. Forces are estimated using a Hill-type muscle model. To account for differences in neuromuscular control of each subject, the model used EMGs as input. To make this clinically useful, joint angles were measured using electrogoniometers. A dynamometer was used to measure joint moments during the model calibration stage, but was not required during real-time studies. The model accounts for the force-length and force-velocity properties of muscles, and other parameters such as tendon slack length and optimal fiber length. Additional parameters, such as pennation angle and moment arm of each muscle in the model, vary as functions of joint angle. In this paper, the model is presented and it application is demonstrated in two subjects: one with a healthy Achilles tendon and a second 6 months post Achilles tendon rupture and repair.

中文翻译:

实时 EMG 驱动的踝关节肌肉骨骼模型。

肌肉力量的实时估计可能是一个非常有价值的康复工具。通过观察康复过程中产生了多少肌肉力量,治疗师知道他们是否在治疗的安全范围内工作,患者也知道他们是否产生了足够的力量来期待改善。对于跟腱断裂的康复尤其如此,尽管动物研究表明低水平负荷是有益的,但出于对超负荷和导致再次断裂的恐惧,通常在手术后八周内进行最少的治疗。为了满足这一需求,我们开发了一种生物力学模型,可以实时估计小腿三头肌和跟腱中的力。使用希尔型肌肉模型估计力。为了解释每个受试者神经肌肉控制的差异,该模型使用 EMG 作为输入。为了使这在临床上有用,使用电测角仪测量关节角度。测功机用于在模型校准阶段测量关节力矩,但在实时研究期间不需要。该模型考虑了肌肉的力-长度和力-速度特性,以及其他参数,如肌腱松弛长度和最佳纤维长度。附加参数,例如模型中每块肌肉的羽状角和力臂,会随着关节角度的变化而变化。在本文中,该模型被提出并在两个受试者中得到了证明:一个是跟腱健康,另一个是跟腱断裂和修复后 6 个月。关节角度使用电子测角仪测量。测功机用于在模型校准阶段测量关节力矩,但在实时研究期间不需要。该模型考虑了肌肉的力-长度和力-速度特性,以及其他参数,如肌腱松弛长度和最佳纤维长度。附加参数,例如模型中每块肌肉的羽状角和力臂,会随着关节角度的变化而变化。在本文中,该模型被提出并在两个受试者中得到了证明:一个是跟腱健康,另一个是跟腱断裂和修复后 6 个月。关节角度使用电子测角仪测量。测功机用于在模型校准阶段测量关节力矩,但在实时研究期间不需要。该模型考虑了肌肉的力-长度和力-速度特性,以及其他参数,如肌腱松弛长度和最佳纤维长度。附加参数,例如模型中每块肌肉的羽状角和力臂,会随着关节角度的变化而变化。在本文中,该模型被提出并在两个受试者中得到了证明:一个是跟腱健康,另一个是跟腱断裂和修复后 6 个月。该模型考虑了肌肉的力-长度和力-速度特性,以及其他参数,如肌腱松弛长度和最佳纤维长度。附加参数,例如模型中每块肌肉的羽状角和力臂,会随着关节角度的变化而变化。在本文中,该模型被提出并在两个受试者中得到了证明:一个是跟腱健康,另一个是跟腱断裂和修复后 6 个月。该模型考虑了肌肉的力-长度和力-速度特性,以及其他参数,如肌腱松弛长度和最佳纤维长度。附加参数,例如模型中每块肌肉的羽状角和力臂,会随着关节角度的变化而变化。在本文中,该模型被提出并在两个受试者中得到了证明:一个是跟腱健康,另一个是跟腱断裂和修复后 6 个月。
更新日期:2011-11-23
down
wechat
bug