当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
Nano-Micro Letters ( IF 31.6 ) Pub Date : 2016-01-01 , DOI: 10.1007/s40820-015-0063-3
Xiaoping Chen 1, 2 , Zhixiang Zhang 1, 2 , Lina Chi 2, 3 , Aathira Krishnadas Nair 2 , Wenfeng Shangguan 1 , Zheng Jiang 2
Affiliation  

Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/CdS/CGSe electrodes were developed as photocathode. With the role of p-n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system (Bi2S3/TNA as photoanode and Pt/SiPVC as photocathode at the same time), a self-bias (open-circuit voltage V oc = 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.

中文翻译:

可见光驱动光电化学水分解的最新进展:催化剂纳米结构和反应系统。

使用太阳能的光化学(PEC)分解水已引起人们的广泛关注,以产生碳足迹较小的可再生氢,然而由于光收集有限,快速产生的能量损失,在提高太阳能分解效率方面仍然存在巨大挑战。光生载流子的重组以及电极降解。本概述着重于不同PEC水分解系统中有关催化剂纳米材料和纳米结构的最新进展。作为光阳极,由于金的表面等离振子共振,Au纳米粒子修饰的TiO2纳米线电极在UV和可见光区域均显示出增强的光活性,并显示了最大的光电流产生,最高可达710 nm。Pt / CdS / CGSe电极已开发为光阴极。在pn异质结的作用下,光电极显示出高稳定性,并连续10天以上连续放出氢气。此外,在Z方案系统中(同时将Bi2S3 / TNA作为光阳极和Pt / SiPVC作为光阴极),在两个光电极之间形成了自偏压(开路电压V oc = 0.766 V),这有助于光生电荷转移并增强光电化学性能,这可能为PEC水分解提供新的提示。同时,还对存在的问题和预期的解决方案进行了回顾。在两个光电极之间形成766 V),这可以促进光生电荷转移并增强光电化学性能,并可能为PEC水分解提供新的提示。同时,还对存在的问题和预期的解决方案进行了回顾。在两个光电极之间形成了766 V),这可以促进光生电荷转移并增强光电化学性能,并且可能为PEC水分解提供新的提示。同时,还对存在的问题和预期的解决方案进行了回顾。
更新日期:2015-10-28
down
wechat
bug