当前位置: X-MOL 学术Biostatistics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pointless spatial modeling.
Biostatistics ( IF 1.8 ) Pub Date : 2018-09-06 , DOI: 10.1093/biostatistics/kxy041
Katie Wilson 1 , Jon Wakefield 2
Affiliation  

The analysis of area-level aggregated summary data is common in many disciplines including epidemiology and the social sciences. Typically, Markov random field spatial models have been employed to acknowledge spatial dependence and allow data-driven smoothing. In the context of an irregular set of areas, these models always have an ad hoc element with respect to the definition of a neighborhood scheme. In this article, we exploit recent theoretical and computational advances to carry out modeling at the continuous spatial level, which induces a spatial model for the discrete areas. This approach also allows reconstruction of the continuous underlying surface, but the interpretation of such surfaces is delicate since it depends on the quality, extent and configuration of the observed data. We focus on models based on stochastic partial differential equations. We also consider the interesting case in which the aggregate data are supplemented with point data. We carry out Bayesian inference and, in the language of generalized linear mixed models, if the link is linear, an efficient implementation of the model is available via integrated nested Laplace approximations. For nonlinear links, we present two approaches: a fully Bayesian implementation using a Hamiltonian Monte Carlo algorithm and an empirical Bayes implementation, that is much faster and is based on Laplace approximations. We examine the properties of the approach using simulation, and then apply the model to the classic Scottish lip cancer data.

中文翻译:

无意义的空间建模。

在包括流行病学和社会科学在内的许多学科中,对区域汇总汇总数据进行分析是很普遍的。通常,已采用马尔可夫随机场空间模型来确认空间依赖性并允许数据驱动的平滑。在区域不规则的情况下,这些模型相对于邻域方案的定义总是具有一个特殊元素。在本文中,我们利用最新的理论和计算进展在连续空间水平上进行建模,从而为离散区域引入空间模型。这种方法还允许重建连续的下层表面,但是这种表面的解释很精细,因为它取决于观测数据的质量,范围和配置。我们专注于基于随机偏微分方程的模型。我们还考虑了有趣的情况,其中聚集数据用点数据补充。我们进行贝叶斯推断,并且使用广义线性混合模型的语言,如果链接是线性的,则可以通过集成的嵌套Laplace逼近有效地实现模型。对于非线性链接,我们提供了两种方法:使用汉密尔顿蒙特卡洛算法的完全贝叶斯实现和基于贝拉克斯逼近的快得多的经验贝叶斯实现。我们使用仿真检查方法的属性,然后将该模型应用于经典的苏格兰唇癌数据。我们进行贝叶斯推断,并且使用广义线性混合模型的语言,如果链接是线性的,则可以通过集成的嵌套Laplace逼近来有效地实现模型。对于非线性链接,我们提供了两种方法:使用汉密尔顿蒙特卡罗算法的完全贝叶斯实现和基于贝拉克斯逼近的快得多的经验贝叶斯实现。我们使用仿真检查方法的属性,然后将该模型应用于经典的苏格兰唇癌数据。我们进行贝叶斯推断,并且使用广义线性混合模型的语言,如果链接是线性的,则可以通过集成的嵌套拉普拉斯逼近来有效地实现模型。对于非线性链接,我们提供了两种方法:使用汉密尔顿蒙特卡洛算法的完全贝叶斯实现和基于贝拉克斯逼近的快得多的经验贝叶斯实现。我们使用仿真检查方法的属性,然后将该模型应用于经典的苏格兰唇癌数据。使用汉密尔顿蒙特卡罗算法和经验贝叶斯实现的完全贝叶斯实现,该方法要快得多并且基于拉普拉斯近似。我们使用仿真检查方法的属性,然后将该模型应用于经典的苏格兰唇癌数据。使用汉密尔顿蒙特卡罗算法和经验贝叶斯实现的完全贝叶斯实现,该方法要快得多并且基于拉普拉斯近似。我们使用仿真检查方法的属性,然后将该模型应用于经典的苏格兰唇癌数据。
更新日期:2020-04-17
down
wechat
bug