当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Control of Turbulent Boundary Layers with In-plane Travelling Waves
Flow, Turbulence and Combustion ( IF 2.0 ) Pub Date : 2018-05-14 , DOI: 10.1007/s10494-018-9926-2
James Bird 1 , Matthew Santer 1 , Jonathan F Morrison 1
Affiliation  

The experimental control of turbulent boundary layers using streamwise travelling waves of spanwise wall velocity, produced using a novel active surface, is outlined in this paper. The innovative surface comprises a pneumatically actuated compliant structure based on the kagome lattice geometry, supporting a pre-tensioned membrane skin. Careful design of the structure enables waves of variable length and speed to be produced in the flat surface in a robust and repeatable way, at frequencies and amplitudes known to have a favourable influence on the boundary layer. Two surfaces were developed, a preliminary module extending 152 mm in the streamwise direction, and a longer one with a fetch of 2.9 m so that the boundary layer can adjust to the new surface condition imposed by the forcing. With a shorter, 1.5 m portion of the surface actuated, generating an upstream-travelling wave, a drag reduction of 21.5% was recorded in the boundary layer with Reτ = 1125. At the same flow conditions, a downstream-travelling produced a much smaller drag reduction of 2.6%, agreeing with the observed trends in current simulations. The drag reduction was determined with constant temperature hot-wire measurements of the mean velocity gradient in the viscous sublayer, while simultaneous laser Doppler vibrometer measurements of the surface recorded the wall motion. Despite the mechanics of the dynamic surface resulting in some out-of-plane motion (which is small in comparison to the in-plane streamwise movement), the positive drag reduction results are encouraging for future investigations at higher Reynolds numbers.

中文翻译:

具有面内行波的湍流边界层的实验控制

本文概述了使用新的活动表面产生的展向壁速度的流向行波对湍流边界层的实验控制。创新的表面包括基于 Kagome 晶格几何形状的气动驱动柔顺结构,支撑预张紧的薄膜表皮。该结构的精心设计能够以稳健且可重复的方式在平坦表面中以已知对边界层具有有利影响的频率和幅度产生可变长度和速度的波。开发了两个表面,一个沿流向延伸 152 mm 的初步模块,以及一个长 2.9 m 的长模块,以便边界层可以适应由强迫施加的新的表面条件。驱动表面的较短的 1.5 m 部分,产生一个上游行波,在 Reτ = 1125 的边界层中记录了 21.5% 的减阻。在相同的流动条件下,下游行波产生的减阻小得多,为 2.6%,与观察到的趋势一致当前的模拟。减阻是通过恒温热线测量粘性底层中的平均速度梯度来确定的,同时对表面的激光多普勒振动计测量记录了壁面运动。尽管动态表面的力学会导致一些平面外运动(与平面内流向运动相比较小),但积极的减阻结果对于未来更高雷诺数的研究来说是令人鼓舞的。5% 记录在边界层中,Reτ = 1125。在相同的流动条件下,下游行驶产生的阻力减少小得多,为 2.6%,与当前模拟中观察到的趋势一致。减阻是通过恒温热线测量粘性亚层中的平均速度梯度来确定的,同时对表面的激光多普勒振动计测量记录了壁面运动。尽管动态表面的力学会导致一些平面外运动(与平面内流向运动相比较小),但积极的减阻结果对于未来更高雷诺数的研究来说是令人鼓舞的。5% 记录在边界层中,Reτ = 1125。在相同的流动条件下,下游行驶产生的阻力减少小得多,为 2.6%,与当前模拟中观察到的趋势一致。减阻是通过恒温热线测量粘性亚层中的平均速度梯度来确定的,同时对表面的激光多普勒振动计测量记录了壁面运动。尽管动态表面的力学会导致一些平面外运动(与平面内流向运动相比较小),但积极的减阻结果对于未来更高雷诺数的研究来说是令人鼓舞的。同意当前模拟中观察到的趋势。减阻是通过恒温热线测量粘性底层中的平均速度梯度来确定的,同时对表面的激光多普勒振动计测量记录了壁面运动。尽管动态表面的力学会导致一些平面外运动(与平面内流向运动相比较小),但积极的减阻结果对于未来更高雷诺数的研究来说是令人鼓舞的。同意当前模拟中观察到的趋势。减阻是通过恒温热线测量粘性底层中的平均速度梯度来确定的,同时对表面的激光多普勒振动计测量记录了壁面运动。尽管动态表面的力学会导致一些平面外运动(与平面内流向运动相比较小),但积极的减阻结果对于未来更高雷诺数的研究来说是令人鼓舞的。
更新日期:2018-05-14
down
wechat
bug