当前位置: X-MOL 学术J. Math. Neurosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kernel Reconstruction for Delayed Neural Field Equations.
The Journal of Mathematical Neuroscience Pub Date : 2018-02-05 , DOI: 10.1186/s13408-018-0058-8
Jehan Alswaihli 1, 2 , Roland Potthast 1, 3 , Ingo Bojak 4 , Douglas Saddy 4 , Axel Hutt 1, 3
Affiliation  

Understanding the neural field activity for realistic living systems is a challenging task in contemporary neuroscience. Neural fields have been studied and developed theoretically and numerically with considerable success over the past four decades. However, to make effective use of such models, we need to identify their constituents in practical systems. This includes the determination of model parameters and in particular the reconstruction of the underlying effective connectivity in biological tissues. In this work, we provide an integral equation approach to the reconstruction of the neural connectivity in the case where the neural activity is governed by a delay neural field equation. As preparation, we study the solution of the direct problem based on the Banach fixed-point theorem. Then we reformulate the inverse problem into a family of integral equations of the first kind. This equation will be vector valued when several neural activity trajectories are taken as input for the inverse problem. We employ spectral regularization techniques for its stable solution. A sensitivity analysis of the regularized kernel reconstruction with respect to the input signal u is carried out, investigating the Fréchet differentiability of the kernel with respect to the signal. Finally, we use numerical examples to show the feasibility of the approach for kernel reconstruction, including numerical sensitivity tests, which show that the integral equation approach is a very stable and promising approach for practical computational neuroscience.

中文翻译:

延迟神经场方程的核重构。

了解现实生活系统的神经场活动是当代神经科学中的一项艰巨任务。在过去的四十年中,对神经领域进行了理论和数字上的研究和开发,取得了相当大的成功。但是,为了有效利用这些模型,我们需要在实际系统中确定它们的组成部分。这包括确定模型参数,特别是重建生物组织中潜在的有效连接性。在这项工作中,我们提供了一种积分方程方法,用于在神经活动受延迟神经场方程控制的情况下重建神经连接性。作为准备,我们研究基于Banach不动点定理的直接问题的解决方案。然后,我们将反问题重新表述为第一类积分方程。当将几个神经活动轨迹作为反问题的输入时,该方程将是矢量值。我们采用频谱正则化技术为其稳定的解决方案。进行了针对输入信号u的正则化核重构的敏感性分析,研究了核相对于信号的Fréchet可微性。最后,我们使用数值示例来说明核重建方法的可行性,包括数值敏感性测试,这表明积分方程方法对于实际的计算神经科学而言是一种非常稳定且有希望的方法。当将几个神经活动轨迹作为反问题的输入时,该方程将是矢量值。我们采用频谱正则化技术为其稳定的解决方案。进行了针对输入信号u的正则化核重构的敏感性分析,研究了核相对于信号的Fréchet可微性。最后,我们使用数值示例来说明核重建方法的可行性,包括数值敏感性测试,这表明积分方程方法对于实际的计算神经科学而言是一种非常稳定且有希望的方法。当将几个神经活动轨迹作为反问题的输入时,该方程将是矢量值。我们采用频谱正则化技术为其稳定的解决方案。进行了针对输入信号u的正则化核重构的敏感性分析,研究了核相对于信号的Fréchet可微性。最后,我们使用数值示例来说明核重建方法的可行性,包括数值敏感性测试,这表明积分方程方法对于实际的计算神经科学而言是一种非常稳定且有希望的方法。进行了针对输入信号u的正则化核重构的敏感性分析,研究了核相对于信号的Fréchet可微性。最后,我们使用数值示例来说明核重建方法的可行性,包括数值敏感性测试,这表明积分方程方法对于实际的计算神经科学而言是一种非常稳定且有希望的方法。进行了针对输入信号u的正则化核重构的敏感性分析,从而研究了核相对于信号的Fréchet可微性。最后,我们使用数值示例来说明核重建方法的可行性,包括数值敏感性测试,这表明积分方程方法对于实际的计算神经科学而言是一种非常稳定且有希望的方法。
更新日期:2018-02-05
down
wechat
bug