当前位置: X-MOL 学术Front. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment.
Frontiers in Microbiology ( IF 4.0 ) Pub Date : 2017-08-05 , DOI: 10.3389/fmicb.2017.01246
Hongyue Dang,Chen-Tung A Chen

Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth's biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and "omics" studies in this field.

中文翻译:

氮转化化石自养微生物对海洋环境变化的响应的生态能量学观点。

生物圈,岩石圈,大气层和水圈中生物基本元素的转化和动员构成了地球的生物地球化学循环,其主要由微生物通过其能量和物质代谢过程驱动。如果没有从光和无机化学键的来源收集微生物能量以自养固定无机碳,那么在广阔的海洋中就不会有可持续的生态系统。尽管人们强调生态能学(生态能学)是生态系统分析的一个核心方面,而微生物在很大程度上控制着海洋生态系统中物质和能量的流动,但很少从生态能学的角度研究海洋微生物群落。微生物的多种生物能途径和生态能策略从根本上讲是生物圈-地球圈相互作用在进化时期的结果。生物地球化学循环与跨生物圈的能量通量紧密相关,海洋固定无机碳的能力通常受养分和能量供应的限制。因此,对于微生物生态能过程如何影响海洋生态系统的结构和功能以及它们如何与变化的环境相互作用的理解,是对海洋碳和氮循环以及全球变化趋势进行机械和预测性理解的基础。以参加海洋氮循环的主要化石自养微生物群为例,本文研究了它们的生态能量策略,对碳循环的贡献以及对与全球变暖,海洋酸化,富营养化,脱氧和污染有关的各种全球变化过程的假定反应和影响。我们得出结论,尽管数十年来进行了巨大的研究努力,但知识差距仍然存在。新技术的出现可能带来科学突破的曙光,这需要在该领域进行生态学,生物地球化学和“组学”研究的多学科结合。我们得出结论,尽管数十年来付出了巨大的努力,但知识差距仍然存在。新技术的出现可能带来科学突破的曙光,这需要在该领域进行生态学,生物地球化学和“组学”研究的多学科结合。我们得出结论,尽管数十年来付出了巨大的努力,但知识差距仍然存在。新技术的出现可能带来科学突破的曙光,这需要在该领域进行生态学,生物地球化学和“组学”研究的多学科结合。
更新日期:2019-11-01
down
wechat
bug