当前位置: X-MOL 学术Physiol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition.
Physiological Reviews ( IF 29.9 ) Pub Date : 2017-06-16 , DOI: 10.1152/physrev.00026.2016
Paul J Baker 1 , Dominic De Nardo 1 , Fiona Moghaddas 1 , Le Son Tran 1 , Annabell Bachem 1 , Tan Nguyen 1 , Thomas Hayman 1 , Hazel Tye 1 , James E Vince 1 , Sammy Bedoui 1 , Richard L Ferrero 1 , Seth L Masters 1
Affiliation  

Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the "guard hypothesis" whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.

中文翻译:

翻译后修饰作为细胞质先天免疫识别的关键决定因素。

细胞表面先天免疫受体可以直接检测细胞质先天免疫传感器很少暴露的多种细胞外病原体。取而代之的是,在细胞质中,环境充斥着被病原微生物间接扰动以激活细胞内传感器(如吡喃,NLRP1,NLRP3或NLRC4)的细胞机制和信号通路。因此,关键的细胞内过程的细微变化(例如磷酸化,泛素化以及其他导致翻译后蛋白质修饰的途径)是细胞质中固有免疫识别的关键决定因素。这个概念对于建立“保护假说”至关重要,否则假使先天免疫传感器处于稳定状态的稳态途径会响应其翻译后修饰状态的改变而释放。最初在植物中发现的证据,最近已被发现在人类中存在类似的守卫机制,从而防止先天免疫传感器吡啶磷酸化的突变触发了显性遗传的自身炎症性疾病。还值得注意的是,即使细胞质先天免疫传感器具有直接配体,例如细菌肽聚糖(NOD1或NOD2),RNA(RIG-1或MDA5)或DNA(cGAS或IFI16),它仍然可能受到以下影响翻译后修饰可显着改变其反应。因此,由于它们存在于细胞质环境中,翻译后修饰是细胞内先天免疫受体功能的关键决定因素。因此,阻止先天免疫传感器吡啶磷酸化的突变会触发显性遗传的自身炎症性疾病。还值得注意的是,即使细胞质先天免疫传感器具有直接配体,例如细菌肽聚糖(NOD1或NOD2),RNA(RIG-1或MDA5)或DNA(cGAS或IFI16),它仍然可能受到以下影响翻译后修饰可显着改变其反应。因此,由于它们存在于细胞质环境中,翻译后修饰是细胞内先天免疫受体功能的关键决定因素。从而阻止先天免疫传感器吡啶磷酸化的突变触发了显性遗传的自身炎症性疾病。还值得注意的是,即使细胞质先天免疫传感器具有直接配体,例如细菌肽聚糖(NOD1或NOD2),RNA(RIG-1或MDA5)或DNA(cGAS或IFI16),它仍然可能受到以下影响翻译后修饰可显着改变其反应。因此,由于它们存在于细胞质环境中,翻译后修饰是细胞内先天免疫受体功能的关键决定因素。RNA(RIG-I或MDA5)或DNA(cGAS或IFI16),仍然会受到翻译后修饰的影响,从而极大地改变其反应。因此,由于它们存在于细胞质环境中,翻译后修饰是细胞内先天免疫受体功能的关键决定因素。RNA(RIG-I或MDA5)或DNA(cGAS或IFI16),仍然会受到翻译后修饰的影响,从而极大地改变其反应。因此,由于它们存在于细胞质环境中,翻译后修饰是细胞内先天免疫受体功能的关键决定因素。
更新日期:2019-11-01
down
wechat
bug