当前位置: X-MOL 学术Eng. Life Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: An analysis of organism lifelines
Engineering in Life Sciences ( IF 3.9 ) Pub Date : 2016-09-14 , DOI: 10.1002/elsc.201600061
Cees Haringa 1 , Wenjun Tang 2 , Amit T Deshmukh 3 , Jianye Xia 2 , Matthias Reuss 4 , Joseph J Heijnen 5 , Robert F Mudde 1 , Henk J Noorman 6
Affiliation  

The trajectories, referred to as lifelines, of individual microorganisms in an industrial scale fermentor under substrate limiting conditions were studied using an Euler‐Lagrange computational fluid dynamics approach. The metabolic response to substrate concentration variations along these lifelines provides deep insight in the dynamic environment inside a large‐scale fermentor, from the point of view of the microorganisms themselves. We present a novel methodology to evaluate this metabolic response, based on transitions between metabolic “regimes” that can provide a comprehensive statistical insight in the environmental fluctuations experienced by microorganisms inside an industrial bioreactor. These statistics provide the groundwork for the design of representative scale‐down simulators, mimicking substrate variations experimentally. To focus on the methodology we use an industrial fermentation of Penicillium chrysogenum in a simplified representation, dealing with only glucose gradients, single‐phase hydrodynamics, and assuming no limitation in oxygen supply, but reasonably capturing the relevant timescales. Nevertheless, the methodology provides useful insight in the relation between flow and component fluctuation timescales that are expected to hold in physically more thorough simulations. Microorganisms experience substrate fluctuations at timescales of seconds, in the order of magnitude of the global circulation time. Such rapid fluctuations should be replicated in truly industrially representative scale‐down simulators.

中文翻译:

用于(生物)反应器按比例缩小的欧拉-拉格朗日计算流体动力学:对生物体生命线的分析

使用欧拉-拉格朗日计算流体动力学方法研究了在底物限制条件下工业规模发酵罐中单个微生物的轨迹,称为生命线。从微生物本身的角度来看,沿这些生命线对底物浓度变化的代谢反应提供了对大型发酵罐内动态环境的深入了解。我们提出了一种新的方法来评估这种代谢反应,该方法基于代谢“机制”之间的转变,可以提供对工业生物反应器内微生物所经历的环境波动的全面统计洞察。这些统计数据为代表性的缩小模拟器的设计提供了基础,通过实验模拟基板的变化。为了专注于方法论,我们以简化的方式使用了产黄青霉的工业发酵,仅处理葡萄糖梯度、单相流体动力学,并假设氧气供应没有限制,但合理地捕获了相关的时间尺度。然而,该方法提供了有关流量和组件波动时间尺度之间的关系的有用见解,这些时间尺度有望在物理上更彻底的模拟中保持不变。微生物在几秒的时间尺度上经历底物波动,在全球循环时间的数量级上。这种快速波动应该在真正具有工业代表性的缩小模拟器中复制。单相流体动力学,并假设氧气供应没有限制,但合理地捕获相关的时间尺度。然而,该方法提供了有关流量和组件波动时间尺度之间关系的有用见解,这些时间尺度有望在物理上更彻底的模拟中保持。微生物在几秒的时间尺度内经历底物波动,在全球循环时间的数量级上。这种快速波动应该在真正具有工业代表性的缩小模拟器中复制。单相流体动力学,并假设氧气供应没有限制,但合理地捕获相关的时间尺度。然而,该方法提供了有关流量和组件波动时间尺度之间的关系的有用见解,这些时间尺度有望在物理上更彻底的模拟中保持不变。微生物在几秒的时间尺度内经历底物波动,在全球循环时间的数量级上。这种快速波动应该在真正具有工业代表性的缩小模拟器中复制。微生物在几秒的时间尺度上经历底物波动,在全球循环时间的数量级上。这种快速波动应该在真正具有工业代表性的缩小模拟器中复制。微生物在几秒的时间尺度内经历底物波动,在全球循环时间的数量级上。这种快速波动应该在真正具有工业代表性的缩小模拟器中复制。
更新日期:2016-09-14
down
wechat
bug