当前位置: X-MOL 学术Ann. Inst. Stat. Math. › 论文详情
Sparse and Efficient Estimation for Partial Spline Models with Increasing Dimension.
Annals of the Institute of Statistical Mathematics ( IF 0.758 ) Pub Date : 2015-01-27 , DOI: 10.1007/s10463-013-0440-y
Guang Cheng,Hao Helen Zhang,Zuofeng Shang

We consider model selection and estimation for partial spline models and propose a new regularization method in the context of smoothing splines. The regularization method has a simple yet elegant form, consisting of roughness penalty on the nonparametric component and shrinkage penalty on the parametric components, which can achieve function smoothing and sparse estimation simultaneously. We establish the convergence rate and oracle properties of the estimator under weak regularity conditions. Remarkably, the estimated parametric components are sparse and efficient, and the nonparametric component can be estimated with the optimal rate. The procedure also has attractive computational properties. Using the representer theory of smoothing splines, we reformulate the objective function as a LASSO-type problem, enabling us to use the LARS algorithm to compute the solution path. We then extend the procedure to situations when the number of predictors increases with the sample size and investigate its asymptotic properties in that context. Finite-sample performance is illustrated by simulations.
更新日期:2019-11-01

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug