当前位置: X-MOL 学术Scanning › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a high-bandwidth tripod scanner for high speed atomic force microscopy
Scanning Pub Date : 2016-08-02 , DOI: 10.1002/sca.21338
Chen Yang 1, 2 , Jihong Yan 1 , Maja Dukic 2 , Nahid Hosseini 2 , Jie Zhao 1 , Georg E Fantner 2
Affiliation  

Tip-scanning high-speed atomic force microscopes (HS-AFMs) have several advantages over their sample-scanning counterparts. Firstly, they can be used on samples of almost arbitrary size since the high imaging bandwidth of the system is immune to the added mass of the sample and its holder. Depending on their layouts, they also enable the use of several tip-scanning HS-AFMs in combination. However, the need for tracking the cantilever with the readout laser makes designing tip-scanning HS-AFMs difficult. This often results in a reduced resonance frequency of the HS-AFM scanner, or a complex and large set of precision flexures. Here, we present a compact, simple HS-AFM designed for integrating the self-sensing cantilever into the tip-scanning configuration, so that the difficulty of tracking small cantilever by laser beam is avoided. The position of cantilever is placed to the end of whole structure, hence making the optical viewing of the cantilever possible. As the core component of proposed system, a high bandwidth tripod scanner is designed, with a scan size of 5.8 µm × 5.8 µm and a vertical travel range of 5.9 µm. The hysteresis of the piezoactuators in X- and Y-axes are linearized using input shaping technique. To reduce in-plane crosstalk and vibration-related dynamics, we implement both filters and compensators on a field programmable analog array. Based on these, images with 512 × 256 pixels are successfully obtained at scan rates up to 1024 lines/s, corresponding to a 4 mm/stip velocity. SCANNING 38:889-900, 2016. © 2016 Wiley Periodicals, Inc.

中文翻译:

高速原子力显微镜高带宽三脚架扫描仪的设计

尖端扫描高速原子力显微镜 (HS-AFM) 比其样品扫描对应物有几个优点。首先,它们可以用于几乎任意大小的样品,因为系统的高成像带宽不受样品及其支架的附加质量的影响。根据它们的布局,它们还可以组合使用多个尖端扫描 HS-AFM。然而,需要用读出激光跟踪悬臂使设计尖端扫描 HS-AFM 变得困难。这通常会导致 HS-AFM 扫描仪的共振频率降低,或一组复杂且大量的精密弯曲。在这里,我们提出了一种紧凑、简单的 HS-AFM,旨在将自感悬臂集成到尖端扫描配置中,从而避免了通过激光束跟踪小悬臂的困难。悬臂的位置放置在整个结构的末端,从而使悬臂的光学观察成为可能。作为该系统的核心部件,设计了一个高带宽三脚架扫描仪,扫描尺寸为 5.8 µm × 5.8 µm,垂直行程范围为 5.9 µm。X 轴和 Y 轴压电执行器的滞后使用输入整形技术线性化。为了减少面内串扰和与振动相关的动态,我们在现场可编程模拟阵列上实现了滤波器和补偿器。基于这些,以高达 1024 线/秒的扫描速率成功获得了 512 × 256 像素的图像,对应于 4 mm/stip 速度。扫描 38:889-900, 2016. © 2016 Wiley Periodicals, Inc. 作为该系统的核心部件,设计了一个高带宽三脚架扫描仪,扫描尺寸为 5.8 µm × 5.8 µm,垂直行程范围为 5.9 µm。X 轴和 Y 轴压电执行器的滞后使用输入整形技术线性化。为了减少面内串扰和与振动相关的动态,我们在现场可编程模拟阵列上实现了滤波器和补偿器。基于这些,以高达 1024 线/秒的扫描速率成功获得了 512 × 256 像素的图像,对应于 4 mm/stip 速度。扫描 38:889-900, 2016. © 2016 Wiley Periodicals, Inc. 作为该系统的核心部件,设计了一个高带宽三脚架扫描仪,扫描尺寸为 5.8 µm × 5.8 µm,垂直行程范围为 5.9 µm。X 轴和 Y 轴压电执行器的滞后使用输入整形技术线性化。为了减少面内串扰和与振动相关的动态,我们在现场可编程模拟阵列上实现了滤波器和补偿器。基于这些,以高达 1024 线/秒的扫描速率成功获得了 512 × 256 像素的图像,对应于 4 mm/stip 速度。扫描 38:889-900, 2016. © 2016 Wiley Periodicals, Inc. 为了减少面内串扰和与振动相关的动态,我们在现场可编程模拟阵列上实现了滤波器和补偿器。基于这些,以高达 1024 线/秒的扫描速率成功获得了 512 × 256 像素的图像,对应于 4 mm/stip 速度。扫描 38:889-900, 2016. © 2016 Wiley Periodicals, Inc. 为了减少面内串扰和与振动相关的动态,我们在现场可编程模拟阵列上实现了滤波器和补偿器。基于这些,以高达 1024 线/秒的扫描速率成功获得了 512 × 256 像素的图像,对应于 4 mm/stip 速度。扫描 38:889-900, 2016. © 2016 Wiley Periodicals, Inc.
更新日期:2016-08-02
down
wechat
bug