当前位置: X-MOL 学术Annu. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots.
Annual Review of Physical Chemistry ( IF 14.7 ) Pub Date : 2016-05-25 , DOI: 10.1146/annurev-physchem-040215-112128
Haiming Zhu 1 , Ye Yang 1 , Kaifeng Wu 1 , Tianquan Lian 1
Affiliation  

Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

中文翻译:

来自光激发半导体量子点的电荷转移动力学。

了解纳米材料的光诱导电荷转移对于这些材料的许多应用至关重要。这篇综述总结了了解量子点(QDs)电荷转移的最新进展,量子点是研究低维量子受限纳米材料基本电荷转移特性的理想模型系统。我们首先在Marcus非绝热电子转移(ET)理论的框架内讨论从量子点到弱耦合受体的电荷转移,重点是ET速率对重组能量,电子耦合和驱动力的依赖性。由于强烈的电子-空穴相互作用,我们表明,应通过俄歇辅助ET模型来描述来自量子点的ET,这与分子之间或与体半导体电极之间的ET显着不同。对于半导体表面上受量子限制的强量子点,耦合可以落在强耦合极限内,在这种情况下,供体-受体相互作用和ET特性可以通过化学吸附的Newns-Anderson模型来描述。我们还简要讨论了通过波函数工程和多激子解离控制量子受限纳米异质结构中电荷转移性质的最新进展。最后,我们确定了一些需要进一步研究的关键领域。我们还简要讨论了通过波函数工程和多激子解离控制量子受限纳米异质结构中电荷转移性质的最新进展。最后,我们确定了一些需要进一步研究的关键领域。我们还简要讨论了通过波函数工程和多激子解离控制量子受限纳米异质结构中电荷转移性质的最新进展。最后,我们确定了一些需要进一步研究的关键领域。
更新日期:2016-05-23
down
wechat
bug