当前位置: X-MOL 学术J. Comput. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gate-Modulated Graphene Quantum Point Contact Device for DNA Sensing.
Journal of Computational Electronics ( IF 2.2 ) Pub Date : 2014-08-08 , DOI: 10.1007/s10825-014-0596-6
Anuj Girdhar , Chaitanya Sathe , Klaus Schulten , Jean-Pierre Leburton

In this paper, we present a computational model to describe the electrical response of a constricted graphene nanoribbon (GNR) to biomolecules translocating through a nanopore. For this purpose, we use a self-consistent 3D Poisson equation solver coupled with an accurate three-orbital tight-binding model to assess the ability for a gate electrode to modulate both the carrier concentration as well as the conductance in the GNR. We also investigate the role of electrolytic screening on the sensitivity of the conductance to external charges and find that the gate electrode can either suppress or enhance the screening of biomolecular charges in the nanopore depending on the value of its potential. Translocating a double-stranded DNA molecule along the pore axis imparted a large change in the conductance at particular gate voltages, suggesting that such a device can be used to sense translocating biomolecules and can be actively tuned to maximize its sensitivity.

中文翻译:


用于 DNA 传感的栅极调制石墨烯量子点接触装置。



在本文中,我们提出了一个计算模型来描述收缩石墨烯纳米带(GNR)对通过纳米孔移位的生物分子的电响应。为此,我们使用自洽 3D 泊松方程求解器和精确的三轨道紧束缚模型来评估栅电极调制 GNR 中载流子浓度和电导的能力。我们还研究了电解屏蔽对电导对外部电荷的敏感性的作用,并发现栅电极可以根据其电势值抑制或增强纳米孔中生物分子电荷的屏蔽。沿孔轴移位双链 DNA 分子会在特定栅极电压下产生较大的电导变化,这表明这种装置可用于感测移位的生物分子,并且可以主动调整以最大化其灵敏度。
更新日期:2014-08-08
down
wechat
bug