当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mixing in microfluidic devices and enhancement methods
Journal of Micromechanics and Microengineering ( IF 2.4 ) Pub Date : 2015-08-22 , DOI: 10.1088/0960-1317/25/9/094001
Kevin Ward 1 , Z Hugh Fan 2
Affiliation  

Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel's hydraulic diameter, flow velocity, and solution's kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.

中文翻译:

微流体装置中的混合和增强方法

由于微通道中的层流是由通道的水力直径、流速和溶液的动力粘度决定的低雷诺数导致的,因此在微流体装置中混合提出了挑战。为了应对这一挑战,已经为各种应用探索了在微流体装置中增强混合的新方法。已经创建了被动混合方法,包括在微通道内使用脊或斜井的方法,以及通过改变几何形状和图案、改变通道表面的特性以及通过模拟进行优化来提高性能的变化。此外,主动混合方法包括微搅拌器、声学混合器、和流动脉动已被研究并集成到微流体装置中,以更可控的方式增强混合。一般来说,无源混频器易于集成,但制造后难以由用户进行外部控制。有源混频器通常会努力集成到设备中,并且它们需要外部组件(例如电源)才能运行。但是,它们可以由用户在一定程度上控制以进行调谐混合。在本文中,我们对一些无源和有源混频器进行了总体概述,讨论了它们的优缺点,并就选择适合特定需求的混频方法提出了建议,并提倡可能集成无源和有源混频器的关键元素充分利用这两种类型的优点。但制作完成后用户难以外部控制。有源混频器通常会努力集成到设备中,并且它们需要外部组件(例如电源)才能运行。但是,它们可以由用户在一定程度上控制以进行调谐混合。在本文中,我们对一些无源和有源混频器进行了总体概述,讨论了它们的优缺点,并就选择适合特定需求的混频方法提出了建议,并提倡可能集成无源和有源混频器的关键元素充分利用这两种类型的优点。但制作完成后用户难以外部控制。有源混频器通常会努力集成到设备中,并且它们需要外部组件(例如电源)才能运行。但是,它们可以由用户在一定程度上控制以进行调谐混合。在本文中,我们对一些无源和有源混频器进行了总体概述,讨论了它们的优缺点,并就选择适合特定需求的混频方法提出了建议,并提倡可能集成无源和有源混频器的关键元素充分利用这两种类型的优点。它们可以由用户在一定程度上控制以进行调谐混合。在本文中,我们对一些无源和有源混频器进行了总体概述,讨论了它们的优缺点,并就选择适合特定需求的混频方法提出了建议,并提倡可能集成无源和有源混频器的关键元素充分利用这两种类型的优点。它们可以由用户在一定程度上控制以进行调谐混合。在本文中,我们对一些无源和有源混频器进行了总体概述,讨论了它们的优缺点,并就选择适合特定需求的混频方法提出了建议,并提倡可能集成无源和有源混频器的关键元素充分利用这两种类型的优点。
更新日期:2015-08-22
down
wechat
bug