当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2018-12-10 , DOI: 10.1016/j.jmbbm.2018.12.003
Thiago André Carniel 1 , Bruno Klahr 1 , Eduardo Alberto Fancello 2
Affiliation  

Present study provides a numerical investigation on multiscale boundary conditions in the computational homogenization of a representative volume element (RVE) of tendon fascicles. A three-dimensional hexagonal-helicoidal finite element RVE composed of two material phases (collagen fibers and cells) and three finite strain viscoelastic models (collagen fibrils, matrix of fibers and cells) compose the multiscale model. Due to the unusual helical geometry of the RVE, the performance of four multiscale boundary conditions is evaluated: the linear boundary displacements model, the minimally constrained model and two mixed boundary conditions allying characteristics of both, linear and minimal models. Numerical results concerning microscopic kinematic fields and macroscopic stress-strain curves point out that one of the mixed models is able to predict the expected multiscale mechanics of the RVE, presenting sound agreement with experimental facts reported in literature, for example: characteristic non-linear shape of the stress-strain curves; macroscopic energy loss by hysteresis; axial rotation of fascicles observed in tensile tests; collagen fibrils are the main load-bearing components of tendons; cells contribute neither to the stiffness nor to the macroscopic energy loss. Moreover, the multiscale model provides important insights on the micromechanics of tendon fascicles, predicting a non-homogeneous and relevant strain localization on cells, even under physiological macroscopic strain amplitudes.



中文翻译:

在多尺度边界条件下,筋膜束RVE的计算均质化。

本研究提供了对肌腱束代表性体积元(RVE)的计算均质化中多尺度边界条件的数值研究。由两个材料相(胶原纤维和细胞)和三个有限应变粘弹性模型(胶原纤维,纤维和细胞的基质)组成的三维六边形螺旋有限元RVE构成了多尺度模型。由于RVE的螺旋几何形状异常,因此对四种多尺度边界条件的性能进行了评估:线性边界位移模型,最小约束模型和两种混合边界条件,同时兼具线性和最小模型的特性。有关微观运动场和宏观应力-应变曲线的数值结果表明,其中一种混合模型能够预测RVE的预期多尺度力学,与文献报道的实验事实表现出良好的一致性,例如:特征非线性形状应力-应变曲线;磁滞引起的宏观能量损失;在拉伸试验中观察到的束的轴向旋转;胶原纤维是肌腱的主要承重成分。单元既不影响刚度也不影响宏观能量损失。此外,多尺度模型对肌腱束的微力学提供了重要的见解,甚至在生理宏观应变幅度下,也预测了细胞上非均匀且相关的应变定位。与文献报道的实验事实呈现出合理的一致性,例如:应力-应变曲线的特征非线性形状;磁滞引起的宏观能量损失;在拉伸试验中观察到的束的轴向旋转;胶原纤维是肌腱的主要承重成分。单元既不影响刚度也不影响宏观能量损失。此外,多尺度模型对肌腱束的微力学提供了重要的见解,甚至在生理宏观应变幅度下,也预测了细胞上非均匀且相关的应变定位。与文献报道的实验事实呈现出合理的一致性,例如:应力-应变曲线的特征非线性形状;磁滞引起的宏观能量损失;在拉伸试验中观察到的束的轴向旋转;胶原纤维是肌腱的主要承重成分。单元既不影响刚度也不影响宏观能量损失。此外,多尺度模型对肌腱束的微力学提供了重要的见解,甚至在生理宏观应变幅度下,也预测了细胞上非均匀且相关的应变定位。胶原纤维是肌腱的主要承重成分。单元既不影响刚度也不影响宏观能量损失。此外,多尺度模型对肌腱束的微力学提供了重要的见解,甚至在生理宏观应变幅度下,也预测了细胞上非均匀且相关的应变定位。胶原纤维是肌腱的主要承重成分。单元既不影响刚度也不影响宏观能量损失。此外,多尺度模型对肌腱束的微力学提供了重要的见解,甚至在生理宏观应变幅度下,也预测了细胞上非均匀且相关的应变定位。

更新日期:2018-12-10
down
wechat
bug