当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Malleable folding of coiled-coils regulates kinesin-3 dimerization [Biophysics and Computational Biology]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2018-12-18 , DOI: 10.1073/pnas.1818758115
Jawdat Al-Bassam 1 , Stanley Nithianantham 1
Affiliation  

Microtubules (MTs) form polarized intracellular fibers inside eukaryotic cells that organize the cytoplasm, form tracks for long-range vesicle transport, and generate forces to align and segregate chromosomes during cell division. The discovery of conventional kinesin (termed kinesin-1) over three decades ago revealed a vast superfamily dedicated to transporting a variety of intracellular cargos or generating forces in a variety of cellular functions (1). Kinesins are now organized into 14 subfamilies which share class-conserved motor domains that promote directional motility or MT dynamic polymerization/depolymerization by adenosine 3,5 triphosphate (ATP) hydrolysis-driven cyclical binding and release from the MT lattice (2, 3). The majority of kinesin subfamilies oligomerize into dimers or tetramers via coiled-coil folding of an α-helical region named the neck coil (NC), which lies in close proximity to the motor domain (4, 5). The NC dimerizes motor domains and couples their conformational changes driven by ATP hydrolysis via a connecting element termed the neck linkers (NLs) (6). Kinesins utilize these elements to couple dual-motor domains to undertake alternating steps in a persistent hand-over-hand walking mechanism along MTs (7). In the kinesin-1 subfamily, cargo-binding domains located at the opposite end of the polypeptide directly inhibit the motor domains to prevent wasteful motility and ATP hydrolysis in the absence of cargo (8).

中文翻译:

卷曲螺旋的可塑性折叠调节驱动蛋白3的二聚化[生物物理学和计算生物学]

微管(MTs)在真核细胞内形成极化的细胞内纤维,这些纤维组织细胞质,形成长程囊泡运输的轨道,并在细胞分裂过程中产生对齐和分离染色体的力。三十多年前,传统的驱动蛋白(称为驱动蛋白-1)的发现揭示了一个庞大的超家族,致力于运输各种细胞内货物或在各种细胞功能中产生作用力(1)。驱动蛋白现在组织成14个亚家族,其份额类保守促进通过腺苷三磷酸3,5-(ATP)水解驱动的周期性从MT晶格(结合和释放定向蠕动或MT动态聚合/解聚马达结构域23)。多数的驱动蛋白亚家族低聚成通过卷曲螺旋二聚体或四聚命名颈部线圈(NC)的α螺旋区域,折叠,其位于靠近马达结构域(45)。NC使运动域二聚化,并通过称为颈连接器(NLs)的连接元件(6)耦合由ATP水解驱动的其构象变化。驱动蛋白利用这些元素来耦合双马达域,以沿着MTs(7)在持久的越过手的步行机制中进行交替的步骤。在kinesin-1亚家族中,位于多肽相反末端的货物结合结构域直接抑制运动结构域,以防止无货物情况下的浪费动力和ATP水解(8)。
更新日期:2018-12-19
down
wechat
bug