当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Zigzag sp2 Carbon Chains Passing through an sp3 Framework: A Driving Force toward Room-Temperature Ferromagnetic Graphene
ACS Nano ( IF 15.8 ) Pub Date : 2018-12-05 00:00:00 , DOI: 10.1021/acsnano.8b08052
Jiří Tuček 1 , Kateřina Holá 1 , Giorgio Zoppellaro 1 , Piotr Błoński 1 , Rostislav Langer 1 , Miroslav Medved’ 1 , Toma Susi 2 , Michal Otyepka 1 , Radek Zbořil 1
Affiliation  

Stabilization of ferromagnetic ordering in graphene-based systems up to room temperature remains an important challenge owing to the huge scope for applications in electronics, spintronics, biomedicine, and separation technologies. To date, several strategies have been proposed, including edge engineering, introduction of defects and dopants, and covalent functionalization. However, these techniques are usually hampered by limited temperature sustainability of ferromagnetic ordering. Here, we describe a method for the well-controlled sp3 functionalization of graphene to synthesize zigzag conjugated sp2 carbon chains that can act as communication pathways among radical motifs. Zigzag sp2/sp3 patterns in the basal plane were clearly observed by high-resolution scanning transmission electron microscopy and provided a suitable matrix for stabilization of ferromagnetic ordering up to room temperature due to combined contributions of itinerant π-electrons and superexchange interactions. The results highlight the principal role of sp2/sp3 ratio and superorganization of radical motifs in graphene for generating room-temperature nonmetallic magnets.

中文翻译:

之字形sp 2碳链通过sp 3框架:推动室温铁磁石墨烯的动力。

由于在电子,自旋电子,生物医学和分离技术中的应用范围很大,因此在基于石墨烯的系统中稳定铁磁有序直至室温仍然是一项重要的挑战。迄今为止,已经提出了几种策略,包括边缘工程,引入缺陷和掺杂剂以及共价官能化。但是,这些技术通常受到铁磁订购的有限温度可持续性的阻碍。在这里,我们描述了石墨烯的sp 3官能化得到良好控制的方法,以合成之字形共轭的sp 2碳链,该碳2链可以充当自由基基序之间的通信途径。之字形sp 2 / sp 3高分辨率扫描透射电子显微镜清楚地观察到了基面上的图形,并且由于流动的π电子和超交换相互作用的共同作用,提供了一个合适的矩阵来稳定铁磁有序直至室温。该结果突出了sp 2 / sp 3比和石墨烯中的自由基基序的超组织对产生室温非金属磁体的主要作用。
更新日期:2018-12-05
down
wechat
bug