当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells
Journal of Power Sources ( IF 8.1 ) Pub Date : 2018-11-29 , DOI: 10.1016/j.jpowsour.2018.11.033
Luye Chen , Youzhi Li , Jiani Yao , Gaoming Wu , Bin Yang , Lecheng Lei , Yang Hou , Zhongjian Li

Bioanodes are core components that affect the performance of microbial fuel cells. In this paper, a superior three-dimensional graphite foam electrode is prepared with rapid gasification of liquid nitrogen and expanding a graphite foil into an expanded graphite foam. With following thermal treatment, thermal treated expanded graphite foam is also prepared. The characterization results indicate that no doping or oxidation occurs during the preparation, which retains a good conductivity and biocompatibility. Microbial fuel cells equipped with expanded graphite foam and thermal treated expanded graphite foam exhibit significantly higher output voltage and power density than graphite foil. Furthermore, cyclic voltammetry and electrochemical impedance spectroscopy are further conducted to investigate the electrochemical performance of different anode materials. Results confirm that the bioelectrochemical activities are enhanced on the fabricated electrodes. Electrochemical active surface area measurement reveals that, other than surface area increase, the graphene-like electrode morphology promotes electron transfer processes. This fast and easy fabrication strategy allows massive production of three-dimensional graphite foam based high performance anodes for microbial fuel cells.



中文翻译:

将石墨快速膨胀为微生物燃料电池的高级三维阳极

生物阳极是影响微生物燃料电池性能的核心成分。在本文中,利用液态氮的快速气化并将石墨箔膨胀成膨胀的石墨泡沫来制备优质的三维石墨泡沫电极。通过以下热处理,还制备了热处理的膨胀石墨泡沫。表征结果表明在制备过程中没有发生掺杂或氧化,这保留了良好的导电性和生物相容性。配备有膨胀石墨泡沫和热处理膨胀石墨泡沫的微生物燃料电池比石墨箔具有更高的输出电压和功率密度。此外,进一步进行了循环伏安法和电化学阻抗谱研究,以研究不同阳极材料的电化学性能。结果证实在所制造的电极上生物电化学活性得到增强。电化学活性表面积测量表明,除了表面积增加以外,类石墨烯的电极形态还促进了电子转移过程。这种快速且容易的制造策略允许大量生产用于微生物燃料电池的基于三维石墨泡沫的高性能阳极。石墨烯状的电极形态促进了电子转移过程。这种快速且容易的制造策略允许大量生产用于微生物燃料电池的基于三维石墨泡沫的高性能阳极。石墨烯状的电极形态促进了电子转移过程。这种快速且容易的制造策略允许大量生产用于微生物燃料电池的基于三维石墨泡沫的高性能阳极。

更新日期:2018-11-29
down
wechat
bug